-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmain.py
193 lines (171 loc) · 9.83 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import torch
import argparse
from nerf.provider import NeRFDataset
from nerf.gui import NeRFGUI
from nerf.utils import *
from tools.shape_tools import *
import shutil
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--path', type=str, default='')
parser.add_argument('-O', action='store_true', help="equals --fp16 --cuda_ray --preload")
parser.add_argument('--test', action='store_true', help="test mode")
parser.add_argument('--workspace', type=str, default='workspace')
parser.add_argument('--seed', type=int, default=0)
### training options
parser.add_argument('--iters', type=int, default=40000, help="training iters")
parser.add_argument('--lr', type=float, default=1e-2, help="initial learning rate")
parser.add_argument('--ckpt', type=str, default='latest')
parser.add_argument('--num_rays', type=int, default=4096, help="num rays sampled per image for each training step")
parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch")
parser.add_argument('--max_steps', type=int, default=1024, help="max num steps sampled per ray (only valid when using --cuda_ray)")
parser.add_argument('--num_steps', type=int, default=512, help="num steps sampled per ray (only valid when NOT using --cuda_ray)")
parser.add_argument('--upsample_steps', type=int, default=0, help="num steps up-sampled per ray (only valid when NOT using --cuda_ray)")
parser.add_argument('--max_ray_batch', type=int, default=4096, help="batch size of rays at inference to avoid OOM (only valid when NOT using --cuda_ray)")
### network backbone options
parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training")
parser.add_argument('--ff', action='store_true', help="use fully-fused MLP")
parser.add_argument('--tcnn', action='store_true', help="use TCNN backend")
### dataset options
parser.add_argument('--mode', type=str, default='colmap', help="dataset mode, supports (colmap, blender)")
parser.add_argument('--color_space', type=str, default='srgb', help="Color space, supports (linear, srgb)")
parser.add_argument('--preload', action='store_true', help="preload all data into GPU, accelerate training but use more GPU memory")
# (the default value is for the fox dataset)
parser.add_argument('--bound', type=float, default=2, help="assume the scene is bounded in box[-bound, bound]^3, if > 1, will invoke adaptive ray marching.")
parser.add_argument('--scale', type=float, default=0.33, help="scale camera location into box[-bound, bound]^3")
parser.add_argument('--dt_gamma', type=float, default=1/128, help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)")
parser.add_argument('--min_near', type=float, default=0., help="minimum near distance for camera")
parser.add_argument('--density_thresh', type=float, default=10, help="threshold for density grid to be occupied")
parser.add_argument('--bg_radius', type=float, default=-1, help="if positive, use a background model at sphere(bg_radius)")
### GUI options
parser.add_argument('--gui', action='store_true', help="start a GUI")
parser.add_argument('--W', type=int, default=1920, help="GUI width")
parser.add_argument('--H', type=int, default=1080, help="GUI height")
parser.add_argument('--radius', type=float, default=5, help="default GUI camera radius from center")
parser.add_argument('--fovy', type=float, default=50, help="default GUI camera fovy")
parser.add_argument('--max_spp', type=int, default=64, help="GUI rendering max sample per pixel")
### experimental
parser.add_argument('--error_map', action='store_true', help="use error map to sample rays")
parser.add_argument('--clip_text', type=str, default='', help="text input for CLIP guidance")
parser.add_argument('--rand_pose', type=int, default=-1, help="<0 uses no rand pose, =0 only uses rand pose, >0 sample one rand pose every $ known poses")
opt = parser.parse_args()
opt.O = True
opt.bound = 1.0
opt.scale = 0.8
opt.dt_gamma = 0
opt.mode = 'colmap'
opt.gui = True
opt.lr = 1e-2
# opt.W = 192*4
# opt.H = 108*4
if opt.O:
opt.fp16 = True
opt.cuda_ray = True
opt.preload = True
surface_type = 'coacd_remesh'
data_type = ''
hull_num = 1
dir_degree = 6
hash = True
normalize = True
regularization = True
clustering = True
prob_model = False
torch_sigma_layer = False
light_model = 'SH'
optimize_camera = True
optimize_gamma = False
lip_mlp = False
coacd_threshold = .5
pattern_rate = 1 / 50
num_level = 8
no_visibility = False
bound_output_normal = False
from data_args import *
opt.path = PATH_TO_DATASET + '/' + DATA_NAME
opt.workspace = './logs/' + data_type + '/' + DATA_NAME
opt.preload = False
from nerf.network_curvedfield import NeRFNetwork
print(opt)
seed_everything(opt.seed)
surface_mesh_path = opt.workspace + '/meshes/surface_' + surface_type + '.obj'
template_path='./data/template/src_model.obj'
if not os.path.exists(surface_mesh_path):
if surface_type == 'dach_reg' or surface_type == 'coacd_reg':
ply_name = sorted([x for x in os.listdir(opt.workspace + '/meshes/') if x.startswith('ngp_') and x.endswith('.obj')])[-1]
ply_path = opt.workspace + '/meshes/' + ply_name
decomp_path = DACH(mesh_path=ply_path, hull_num=hull_num) if surface_type == 'dach_remesh' else CoACD(mesh_path=ply_path, threshold=coacd_threshold)
union_path = MeshUnion(mesh_path=decomp_path) if surface_type == 'dach_remesh' else MeshUnion_manifold(mesh_path=decomp_path)
smooth_path = Smooth(mesh_path=union_path)
if 'coacd' in surface_type:
smooth_path = Align(smooth_path, ply_path)
result_path = Register(src_path=template_path, trg_path=smooth_path, save2trg=True)
elif surface_type == 'dach_remesh' or surface_type == 'coacd_remesh':
ply_name = sorted([x for x in os.listdir(opt.workspace + '/meshes/') if x.startswith('ngp_') and x.endswith('.obj')])[-1]
ply_path = opt.workspace + '/meshes/' + ply_name
decomp_path = DACH(mesh_path=ply_path, hull_num=hull_num) if surface_type == 'dach_remesh' else CoACD(mesh_path=ply_path, threshold=coacd_threshold)
union_path = MeshUnion(mesh_path=decomp_path) if surface_type == 'dach_remesh' else MeshUnion_manifold(mesh_path=decomp_path)
smooth_path = Smooth(mesh_path=union_path)
if 'coacd' in surface_type:
smooth_path = Align(smooth_path, ply_path)
union_mesh = pymesh.load_mesh(smooth_path)
result_mesh = remesh(union_mesh, 'normal')
result_path = surface_mesh_path
pymesh.save_mesh(result_path, result_mesh)
elif surface_type == 'pcl_reg':
ply_path = opt.workspace + '/meshes/pcl.ply'
result_path = Register(src_path=template_path, trg_path=ply_path, save2trg=True, trg_is_ply=True)
else:
print('Unkown surface type: ', surface_type)
exit(0)
shutil.move(result_path, surface_mesh_path)
surface_mesh = trimesh.load_mesh(surface_mesh_path)
ply_path = opt.workspace + '/meshes/pcl.ply'
if not os.path.exists(opt.workspace + '/meshes/h_threshold.npz'):
print('Calculating H threshold...')
pcd = o3d.io.read_point_cloud(ply_path)
pcd = pcd.voxel_down_sample(voxel_size=0.01)
scanned_ply = np.asarray(pcd.points)
udf = np.abs(trimesh.proximity.ProximityQuery(surface_mesh).signed_distance(scanned_ply))
udf_07 = np.partition(udf, -int(udf.shape[0] * .3))[-int(udf.shape[0] * .3)]
h_threshold = 2 * udf_07
np.savez(opt.workspace + '/meshes/h_threshold', h_threshold=h_threshold)
else:
h_threshold = float(np.load(opt.workspace + '/meshes/h_threshold.npz')['h_threshold'])
print('H threshold thickness: ', h_threshold)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_loader = NeRFDataset(opt, device=device, type='trainval', normalize=normalize, optimize_camera=optimize_camera).dataloader()
model = NeRFNetwork(
surface_mesh_path=surface_mesh_path,
h_threshold=h_threshold,
bound=opt.bound,
cuda_ray=opt.cuda_ray,
density_scale=1,
min_near=opt.min_near,
density_thresh=opt.density_thresh,
dir_degree=dir_degree,
bg_radius=opt.bg_radius,
hash=hash,
clustering=clustering,
prob_model=prob_model,
torch_sigma_layer=torch_sigma_layer,
light_model=light_model,
num_level=num_level,
regularization=regularization,
cal_dist_loss=False, # The effect of dist loss becomes wierd after the lib got upgraded!!!!!!!!
optimize_camera=optimize_camera,
camera_num=train_loader._data.length,
optimize_gamma=optimize_gamma,
lip_mlp=lip_mlp,
pattern_rate=pattern_rate,
no_visibility=no_visibility,
bound_output_normal=bound_output_normal,
)
print(model)
criterion = torch.nn.L1Loss()
optimizer = lambda model: torch.optim.Adam(model.get_params(opt.lr), betas=(0.9, 0.99), eps=1e-15)
scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.1 ** min(iter / opt.iters, 1))
trainer = Trainer('ngp', opt, model, device=device, workspace=opt.workspace, optimizer=optimizer, criterion=criterion, ema_decay=0.95, fp16=opt.fp16, lr_scheduler=scheduler, scheduler_update_every_step=True, metrics=[PSNRMeter()], use_checkpoint=opt.ckpt, eval_interval=50)
trainer.train_loader = train_loader # attach dataloader to trainer
gui = NeRFGUI(opt, trainer, gui_mode=opt.gui)
gui.render()