-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
193 lines (141 loc) · 6.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from datetime import datetime
import numpy as np
import pandas as pd
import os
import argparse
from sklearn.metrics import classification_report
from tqdm import tqdm
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score
from model import CNN_Classifier
from preprocess import CustomDataset
from torch.utils.tensorboard import SummaryWriter
# using GPU
device = torch.device(f'cuda:0' if torch.cuda.is_available() else 'cpu')
# hyper parameter
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('-lr', dest='lr', help='learning rate value', default=0.0001, type=float)
parser.add_argument('-epochs', dest='epochs', help='epochs', default=100, type=int)
parser.add_argument('-batch', dest='batch', help='batch', default=16, type=int)
parser.add_argument('-dataset', dest='dataset', help='dataset', default="./dataset", type=str)
parser.add_argument("--test", dest='test',action="store_true", help="Use model test")
parser.add_argument('-model_weights', dest='model_weights', help='model path', default='./models/cnn_model_1.0.h5')
args = parser.parse_args()
return args
args = parse_args()
batch = args.batch
lr = args.lr
epochs = args.epochs
dataset = args.dataset
SEPARATOR = '======================================='
print(SEPARATOR)
print("Hyperparameter")
print(f"lr : {lr}")
print(f"epochs : {epochs}")
print(f"batch : {batch}")
print(f"test : {args.test}")
print(f"dataset : {dataset}")
print(SEPARATOR)
# save model path
eventid = f"{datetime.now().strftime('CNN-%Y.%m.%d')}_lr_{lr}"
output_dir = "./models/" + eventid
os.makedirs(output_dir, exist_ok=True)
# file path
big_fast_path = dataset+"/big_fast_0719/"
big_slow_path = dataset+"/big_slow_0719/"
#preprocess & load dataset
slow_dataset = CustomDataset(big_slow_path, label = 0)
fast_dataset = CustomDataset(big_fast_path, label = 1)
slow_train, slow_valid, slow_test = torch.utils.data.random_split(slow_dataset,
[int(len(slow_dataset)*0.8), int(len(slow_dataset)*0.1), len(slow_dataset) - int(len(slow_dataset) * 0.8) - int(len(slow_dataset) * 0.1)],
generator=torch.Generator().manual_seed(42))
fast_train, fast_valid, fast_test = torch.utils.data.random_split(fast_dataset,
[int(len(fast_dataset)*0.8), int(len(fast_dataset)*0.1), len(fast_dataset) - int(len(fast_dataset) * 0.8) - int(len(fast_dataset) * 0.1)],
generator=torch.Generator().manual_seed(42))
train_dataset = torch.utils.data.ConcatDataset([slow_train, fast_train])
val_dataset = torch.utils.data.ConcatDataset([slow_valid, fast_valid])
test_dataset = torch.utils.data.ConcatDataset([slow_test, fast_test])
train_loader = DataLoader(train_dataset, batch_size=batch, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch)
test_loader = DataLoader(val_dataset, batch_size=batch)
model = CNN_Classifier().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
criterion = nn.BCELoss()
best_auc = 0
best_epoch = -1
best_pred = []
prev_model = None
writer = SummaryWriter(log_dir=output_dir)
if not args.test:
for i in tqdm(range(epochs)):
# Train
train_loss = 0
true_labels = []
pred_labels = []
model.train()
for e_num, (x, y) in enumerate(train_loader):
x, y = x.type(torch.FloatTensor).to(device), y.type(torch.FloatTensor).to(device)
model.zero_grad()
pred_y = model(x)
loss = criterion(pred_y, y)
train_loss += loss.detach()
optimizer.zero_grad()
loss.backward()
optimizer.step()
true_labels.extend(y.cpu().numpy())
pred_labels.extend(np.around(pred_y.cpu().detach().numpy()))
train_auc = accuracy_score(true_labels, pred_labels)
# Valid
valid_loss=0
true_labels=[]
pred_labels=[]
model.eval()
for e_num, (x, y) in enumerate(val_loader):
x, y = x.type(torch.FloatTensor).to(device), y.type(torch.FloatTensor).to(device)
pred_y = model(x)
loss = criterion(pred_y, y)
valid_loss += loss.detach()
true_labels.extend(y.cpu().numpy())
pred_labels.extend(np.around(pred_y.cpu().detach().numpy()))
valid_auc = accuracy_score(true_labels, pred_labels)
writer.add_scalar("train_loss", train_loss, global_step=i+1)
writer.add_scalar("train_auc", train_auc, global_step=i+1)
writer.add_scalar("valid_loss", valid_loss, global_step=i+1)
writer.add_scalar("valid_auc", valid_auc, global_step=i+1)
writer.flush()
print(f"train_loss : {train_loss:.2f} train_auc : {train_auc:.2f} valid_loss : {valid_loss:.2f} valid_auc : {valid_auc:.2f}")
if valid_auc > best_auc:
best_pred = pred_labels
best_auc = valid_auc
best_epoch = i
if prev_model is not None:
os.remove(prev_model)
prev_model = output_dir+f'/cnn_model_{best_auc}.h5'
torch.save(model.state_dict(), prev_model)
writer.close()
print(f"best validation acc = {best_auc}, in epoch {best_epoch}")
else:
# Test
print("Test trained model")
model.load_state_dict(torch.load(args.model_weights))
test_loss = 0
true_labels = []
pred_labels = []
model.eval()
for e_num, (x, y) in enumerate(test_loader):
x, y = x.type(torch.FloatTensor).to(device), y.type(torch.FloatTensor).to(device)
model.zero_grad()
pred_y = model(x)
loss = criterion(pred_y, y)
test_loss += loss.detach()
true_labels.extend(y.cpu().numpy())
pred_labels.extend(np.around(pred_y.cpu().detach().numpy()))
test_auc = accuracy_score(true_labels, pred_labels)
print(classification_report(true_labels, pred_labels, target_names=["slow", "fast"]))
print(accuracy_score(true_labels, pred_labels))
print(f1_score(true_labels, pred_labels))
print(precision_score(true_labels, pred_labels))
print(recall_score(true_labels, pred_labels))