-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcount_district_orders.R
executable file
·633 lines (623 loc) · 27.4 KB
/
count_district_orders.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
count_district_orders <- function(
df_orders,
col_order_item_id = 'order_item_id',
col_date_created = 'date_created',
col_date_updated = 'date_updated',
col_policy_order_status = 'policy_order_status',
col_id_no = 'id_no',
replace_id_no = 2,
district_list,
col_district = 'district',
col_district_code = 'district_code',
col_group = NA,
group_order = NULL,
col_price = NA,
display_date = NA,
city,
start_time = NA,
end_time = Sys.time(),
sop_datetime = NA
) {
sop_dir <- getwd()
if(is.na(sop_datetime)) {
sop_datetime <- paste0(
lubridate::year(end_time), '年',
lubridate::month(end_time), '月',
lubridate::day(end_time), '日',
lubridate::hour(end_time), '时'
)
}
# Rename columns ----
district_list <- district_list %>%
select(col_district = !!col_district, col_district_code = !!col_district_code)
df_orders <- df_orders %>%
rename(
col_order_item_id = !!col_order_item_id,
col_date_created = !!col_date_created,
col_date_updated = !!col_date_updated,
col_policy_order_status = !!col_policy_order_status,
col_id_no = !!col_id_no
) %>%
mutate(
col_date_created = as_date(col_date_created),
col_date_updated = as_date(col_date_updated)
)
# 添加分组
if(!is.na(col_group)) {
df_orders <- df_orders %>% rename(col_group = !!col_group)
if(!is.null(group_order)) {
if(length(unique(group_order)) != length(unique(df_orders$col_group))) {
stop(
glue(
"Number of unique(group_order) is not equal to number of unique(col_group), ",
"please check again."
)
)
}
}
}
# 价格列
if(!is.na(col_price)) {
df_orders <- df_orders %>% rename(col_price = !!col_price)
df_orders$col_price <- as.numeric(df_orders$col_price) / 100
}
# 去掉多余的列,减少内存使用
df_orders <- df_orders %>% select(contains('col_'))
# 开始日期和结束日期
if(is.na(start_time)) { start_time <- min(df_orders[['col_date_created']]) }
start_date <- as_date(start_time)
end_date <- as_date(end_time)
# 按input日期筛选订单(注意input日期格式)
df_orders <- df_orders %>% filter(col_date_created >= start_date & col_date_created <= end_date)
# 添加地区
df_orders <- df_orders %>%
# 提取身份证前2位或前6位,用于统计地区
mutate(
col_id_no_2 = str_replace(
col_id_no, paste0("(", paste0(rep('.', replace_id_no), collapse = ''), ").*"), '\\1'
)
) %>%
# 添加地区信息
left_join(district_list, by = c('col_id_no_2' = 'col_district_code')) %>%
# 匹配不是的归到其他
mutate(col_district = replace_na(col_district, '其他'))
# 找到所有退单
refund_orders <- df_orders %>% filter(col_policy_order_status %in% c('04', '05'))
# 有效订单和退单分别根据下单日期和退单日期添加date
df_orders <- df_orders %>%
# 添加年度_一年中的第几周(yr_week)的信息
mutate(
yr = str_replace(col_date_created, '(....).*', '\\1'),
week_date = week(col_date_created)
) %>%
unite(yr, week_date, col = 'yr_week', sep = '_') %>%
# 添加月份信息
mutate(yr_mon = format(col_date_created, format = '%Y-%m'))
refund_orders <- refund_orders %>%
# 添加年度_一年中的第几周(yr_week)的信息
mutate(
yr = str_replace(col_date_updated, '(....).*', '\\1'),
week_date = week(col_date_updated)
) %>%
unite(yr, week_date, col = 'yr_week', sep = '_') %>%
# 添加月份信息
mutate(yr_mon = format(col_date_updated, format = '%Y-%m'))
# output file
output_list <- list()
# Sheet1 ----
order_group <- c('col_district', 'col_date_created')
if(!is.na(col_group)) { order_group <- c(order_group, 'col_group') }
if(!is.na(col_price)) { order_group <- c(order_group, 'col_price') }
district_order_daily <- df_orders %>%
# 根据display_date筛选订单
filter(col_date_created >= as_date(display_date)) %>%
group_by(across(all_of(order_group))) %>%
mutate(orders_daily = length(unique(col_order_item_id))) %>%
ungroup() %>%
select(!!order_group, orders_daily) %>%
distinct()
refund_order_group <- c('col_district', 'col_date_updated')
if(!is.na(col_group)) { refund_order_group <- c(refund_order_group, 'col_group') }
if(!is.na(col_price)) { refund_order_group <- c(refund_order_group, 'col_price') }
district_refund_order_daily <- refund_orders %>%
# 根据display_date筛选订单
filter(col_date_created >= as_date(display_date)) %>%
group_by(across(all_of(refund_order_group))) %>%
mutate(refund_orders_daily = length(unique(col_order_item_id))) %>%
ungroup() %>%
select(!!refund_order_group, refund_orders_daily) %>%
rename(col_date_created = col_date_updated) %>%
distinct()
district_order_daily <-
full_join(district_order_daily, district_refund_order_daily) %>%
mutate(
orders_daily = replace_na(orders_daily, 0),
refund_orders_daily = replace_na(refund_orders_daily, 0)
) %>%
# 净投保量
mutate(net_orders = orders_daily - refund_orders_daily) %>%
arrange(desc(col_date_created), col_district)
# 计算保费
if(!is.na(col_price)) {
# 按照不同价格计算保费
district_order_daily$col_price <-
district_order_daily$col_price * district_order_daily$net_orders
# 然后根据省份、日期、产品相加
district_order_daily <- district_order_daily %>%
group_by(col_district, col_date_created, col_group) %>%
summarize(
col_price = sum(col_price), orders_daily = sum(orders_daily),
refund_orders_daily = sum(refund_orders_daily), net_orders = sum(net_orders)
) %>%
ungroup()
}
# # 如果display_date不为空,则只展示该日期以后的数据
# if(!is.na(display_date)) {
# district_order_daily <- district_order_daily %>%
# filter(col_date_created >= as_date(display_date))
# }
# 合计
order_group2 <- order_group[order_group != 'col_date_created']
if(!is.na(col_price)) {
order_group2 <- order_group2[order_group2 != 'col_price']
district_order_daily_output <- district_order_daily %>%
group_by(across(all_of(order_group2))) %>%
summarise(total_net_orders = sum(net_orders), total_premiums = sum(col_price)) %>%
ungroup()
} else {
district_order_daily_output <- district_order_daily %>%
group_by(across(all_of(order_group2))) %>%
summarise(total_net_orders = sum(net_orders)) %>%
ungroup()
}
# 如果有分组,需要把累计净投保量分组展示,并统计总净投保量和保费
if(!is.na(col_group)) {
district_order_daily_output <- district_order_daily_output %>%
pivot_wider(
names_from = col_group, values_from = c(total_net_orders, total_premiums),
names_glue = "{col_group}_{.value}"
)
colnames(district_order_daily_output) <- str_replace(
colnames(district_order_daily_output), "_total_net_orders", "累计净投保量"
)
colnames(district_order_daily_output) <- str_replace(
colnames(district_order_daily_output), "_total_premiums", "累计保费"
)
district_order_daily_output[is.na(district_order_daily_output)] <- 0
# 计算累计净投保量和累计保费
total_net_orders <- district_order_daily_output['col_district']
total_net_orders$累计净投保量 <- 0
total_premiums <- district_order_daily_output['col_district']
total_premiums$累计保费 <- 0
for(grp in unique(district_order_daily$col_group)) {
total_net_orders$累计净投保量 <-
total_net_orders$累计净投保量 + district_order_daily_output[[glue("{grp}累计净投保量")]]
total_premiums$累计保费 <-
total_premiums$累计保费 + district_order_daily_output[[glue("{grp}累计保费")]]
district_order_daily_output[glue("{grp}累计保费")] <- NULL
}
district_order_daily_output <- total_net_orders %>%
left_join(total_premiums) %>%
left_join(district_order_daily_output)
}
# 转置成宽表格
# 日期从大到小遍历(从近到远)
if(!is.na(col_group)) {
# 提取每组的每日的净投保量,转置成宽表格,合并到output
for(grp in unique(district_order_daily$col_group)) {
tmp_district_order_daily <- district_order_daily %>% filter(col_group == !!grp)
for(d in sort(unique(tmp_district_order_daily$col_date_created), decreasing = TRUE)) {
tmp2_district_order_daily <- tmp_district_order_daily %>%
filter(col_date_created == !!d) %>%
# 只取需要的列进行转置,转置后剩两列
select(col_district, col_date_created, col_group, net_orders) %>%
pivot_wider(
names_from = c(col_date_created, col_group),
values_from = net_orders,
names_glue = "{col_group}{col_date_created}净投保量"
)
district_order_daily_output <- left_join(
district_order_daily_output, tmp2_district_order_daily
)
}
}
} else {
for(d in sort(unique(district_order_daily$col_date_created), decreasing = TRUE)) {
tmp_district_order_daily <- district_order_daily %>%
filter(col_date_created == !!d) %>%
# 只取需要的列进行转置,转置后剩两列
select(col_district, col_date_created, net_orders) %>%
pivot_wider(names_from = col_date_created, values_from = net_orders)
district_order_daily_output <- left_join(
district_order_daily_output, tmp_district_order_daily
)
}
district_order_daily_output <- district_order_daily_output %>%
rename(累计净投保量 = total_net_orders)
}
district_order_daily_output <- district_order_daily_output %>%
# 重命名
rename(地区 = col_district) %>%
# 替换净投保量的NA为0
mutate(across(contains('净投保量'), ~replace_na(.x, 0)))
# 如果有分组信息,需要添加所有分组的累计净投保量
if(!is.na(col_group)) {
# 准备列排序
col_order <- c('地区', '累计净投保量')
# 如果有输入保费,则计算累计保费
if(!is.na(col_price)) { col_order <- c(col_order, '累计保费') }
# 列排序
for(i in group_order) { col_order <- c(col_order, glue("{i}累计净投保量")) }
for(i in group_order) {
tmp_col_order <- colnames(district_order_daily_output) %>%
.[(!. %in% col_order)] %>%
.[(str_detect(., i))]
col_order <- c(col_order, tmp_col_order)
}
district_order_daily_output <- district_order_daily_output %>% select(!!col_order)
}
# 行排序,如果有保费则按照保费,否则按照累计净投保量
district_order_daily_output <- district_order_daily_output %>% arrange(desc(累计净投保量))
if(!is.na(col_price)) {
district_order_daily_output <- district_order_daily_output %>% arrange(desc(累计保费))
}
display_month <- str_replace(display_date, '.....(..).*', '\\1')
output_list[[glue("分版本-{display_month}月")]] <- district_order_daily_output
# Sheet2 ----
order_group <- c('col_district', 'col_date_created')
if(!is.na(col_group)) { order_group <- c(order_group, 'col_group') }
if(!is.na(col_price)) { order_group <- c(order_group, 'col_price') }
district_order_daily <- df_orders %>%
# # 根据display_date筛选订单
# filter(col_date_created >= as_date(display_date)) %>%
group_by(across(all_of(order_group))) %>%
mutate(orders_daily = length(unique(col_order_item_id))) %>%
ungroup() %>%
select(!!order_group, orders_daily) %>%
distinct()
refund_order_group <- c('col_district', 'col_date_updated')
if(!is.na(col_group)) { refund_order_group <- c(refund_order_group, 'col_group') }
if(!is.na(col_price)) { refund_order_group <- c(refund_order_group, 'col_price') }
district_refund_order_daily <- refund_orders %>%
# # 根据display_date筛选订单
# filter(col_date_created >= as_date(display_date)) %>%
group_by(across(all_of(refund_order_group))) %>%
mutate(refund_orders_daily = length(unique(col_order_item_id))) %>%
ungroup() %>%
select(!!refund_order_group, refund_orders_daily) %>%
rename(col_date_created = col_date_updated) %>%
distinct()
district_order_daily <-
full_join(district_order_daily, district_refund_order_daily) %>%
mutate(
orders_daily = replace_na(orders_daily, 0),
refund_orders_daily = replace_na(refund_orders_daily, 0)
) %>%
# 净投保量
mutate(net_orders = orders_daily - refund_orders_daily) %>%
arrange(desc(col_date_created), col_district)
# 计算保费
if(!is.na(col_price)) {
# 按照不同价格计算保费
district_order_daily$col_price <-
district_order_daily$col_price * district_order_daily$net_orders
# 然后根据省份、日期、产品相加
district_order_daily <- district_order_daily %>%
group_by(col_district, col_date_created, col_group) %>%
summarize(
col_price = sum(col_price), orders_daily = sum(orders_daily),
refund_orders_daily = sum(refund_orders_daily), net_orders = sum(net_orders)
) %>%
ungroup()
}
# # 如果display_date不为空,则只展示该日期以后的数据
# if(!is.na(display_date)) {
# district_order_daily <- district_order_daily %>%
# filter(col_date_created >= as_date(display_date))
# }
# 合计
order_group2 <- order_group[order_group != 'col_date_created']
if(!is.na(col_price)) {
order_group2 <- order_group2[order_group2 != 'col_price']
district_order_daily_output <- district_order_daily %>%
group_by(across(all_of(order_group2))) %>%
summarise(total_net_orders = sum(net_orders), total_premiums = sum(col_price)) %>%
ungroup()
} else {
district_order_daily_output <- district_order_daily %>%
group_by(across(all_of(order_group2))) %>%
summarise(total_net_orders = sum(net_orders)) %>%
ungroup()
}
# 如果有分组,需要把累计净投保量分组展示,并统计总净投保量和保费
if(!is.na(col_group)) {
district_order_daily_output <- district_order_daily_output %>%
pivot_wider(
names_from = col_group, values_from = c(total_net_orders, total_premiums),
names_glue = "{col_group}_{.value}"
)
colnames(district_order_daily_output) <- str_replace(
colnames(district_order_daily_output), "_total_net_orders", "累计净投保量"
)
colnames(district_order_daily_output) <- str_replace(
colnames(district_order_daily_output), "_total_premiums", "累计保费"
)
district_order_daily_output[is.na(district_order_daily_output)] <- 0
# 计算累计净投保量和累计保费
total_net_orders <- district_order_daily_output['col_district']
total_net_orders$累计净投保量 <- 0
total_premiums <- district_order_daily_output['col_district']
total_premiums$累计保费 <- 0
for(grp in unique(district_order_daily$col_group)) {
total_net_orders$累计净投保量 <-
total_net_orders$累计净投保量 + district_order_daily_output[[glue("{grp}累计净投保量")]]
total_premiums$累计保费 <-
total_premiums$累计保费 + district_order_daily_output[[glue("{grp}累计保费")]]
district_order_daily_output[glue("{grp}累计保费")] <- NULL
}
district_order_daily_output <- total_net_orders %>%
left_join(total_premiums) %>%
left_join(district_order_daily_output)
}
# 转置成宽表格
# 日期从大到小遍历(从近到远)
if(!is.na(col_group)) {
# 提取每组的每日的净投保量,转置成宽表格,合并到output
for(grp in unique(district_order_daily$col_group)) {
tmp_district_order_daily <- district_order_daily %>% filter(col_group == !!grp)
for(d in sort(unique(tmp_district_order_daily$col_date_created), decreasing = TRUE)) {
tmp2_district_order_daily <- tmp_district_order_daily %>%
filter(col_date_created == !!d) %>%
# 只取需要的列进行转置,转置后剩两列
select(col_district, col_date_created, col_group, net_orders) %>%
pivot_wider(
names_from = c(col_date_created, col_group),
values_from = net_orders,
names_glue = "{col_group}{col_date_created}净投保量"
)
district_order_daily_output <- left_join(
district_order_daily_output, tmp2_district_order_daily
)
}
}
} else {
for(d in sort(unique(district_order_daily$col_date_created), decreasing = TRUE)) {
tmp_district_order_daily <- district_order_daily %>%
filter(col_date_created == !!d) %>%
# 只取需要的列进行转置,转置后剩两列
select(col_district, col_date_created, net_orders) %>%
pivot_wider(names_from = col_date_created, values_from = net_orders)
district_order_daily_output <- left_join(
district_order_daily_output, tmp_district_order_daily
)
}
district_order_daily_output <- district_order_daily_output %>%
rename(累计净投保量 = total_net_orders)
}
district_order_daily_output <- district_order_daily_output %>%
# 重命名
rename(地区 = col_district) %>%
# 替换净投保量的NA为0
mutate(across(contains('净投保量'), ~replace_na(.x, 0)))
# 如果有分组信息,需要添加所有分组的累计净投保量
if(!is.na(col_group)) {
# 准备列排序
col_order <- c('地区', '累计净投保量')
# 如果有输入保费,则计算累计保费
if(!is.na(col_price)) { col_order <- c(col_order, '累计保费') }
# 列排序
for(i in group_order) { col_order <- c(col_order, glue("{i}累计净投保量")) }
for(i in group_order) {
tmp_col_order <- colnames(district_order_daily_output) %>%
.[(!. %in% col_order)] %>%
.[(str_detect(., i))]
col_order <- c(col_order, tmp_col_order)
}
district_order_daily_output <- district_order_daily_output %>% select(!!col_order)
}
# 行排序,如果有保费则按照保费,否则按照累计净投保量
district_order_daily_output <- district_order_daily_output %>% arrange(desc(累计净投保量))
if(!is.na(col_price)) {
district_order_daily_output <- district_order_daily_output %>% arrange(desc(累计保费))
}
output_list[[glue("分版本-投保期全长")]] <- district_order_daily_output
# 按日期统计 ----
area_order_daily <- df_orders %>%
group_by(col_district, col_date_created) %>%
mutate(orders_daily = length(unique(col_order_item_id))) %>%
ungroup() %>%
select(col_date_created, col_district, orders_daily) %>%
distinct()
area_refund_order_daily <- refund_orders %>%
group_by(col_district, col_date_updated) %>%
mutate(refund_orders_daily = length(unique(col_order_item_id))) %>%
ungroup() %>%
select(col_date_updated, col_district, refund_orders_daily) %>%
distinct()
area_order_daily <- full_join(
area_order_daily, area_refund_order_daily,
by = c('col_date_created' = 'col_date_updated', "col_district" = 'col_district')
) %>%
mutate(
orders_daily = replace_na(orders_daily, 0),
refund_orders_daily = replace_na(refund_orders_daily, 0)
) %>%
# 净投保量
mutate(net_orders = orders_daily - refund_orders_daily) %>%
# 净投保量日占比
group_by(col_date_created) %>%
mutate(net_orders_ratio = round(net_orders / sum(net_orders), 3)) %>%
ungroup() %>%
arrange(desc(col_date_created), col_district)
# 准备转置成宽表格
area_order_daily <- area_order_daily %>%
select(地区= col_district, 日期 = col_date_created, 净投保量 = net_orders,
净投保量占比 = net_orders_ratio) %>%
mutate(日期 = format(日期, format = "%m月%d日"))
area_order_daily_output <- area_order_daily %>%
# 添加合计
group_by(地区) %>%
summarise(合计净投保量 = sum(净投保量)) %>%
ungroup() %>%
mutate(合计净投保量占比 = round(合计净投保量/sum(合计净投保量), 3))
# 日期从大到小遍历(从近到远)
for(d in sort(unique(area_order_daily$日期), decreasing = TRUE)) {
tmp_area_order_daily <- filter(area_order_daily, 日期 == !!d) %>%
mutate(日期 = str_replace_all(日期, '0', '')) %>%
pivot_wider(
names_from = 日期, values_from = c(净投保量, 净投保量占比), names_glue = "{日期}{.value}"
)
area_order_daily_output <- left_join(
area_order_daily_output, tmp_area_order_daily, by = c('地区' = '地区')
)
}
# 替换NA为0
area_order_daily_output <- area_order_daily_output %>%
mutate(across(contains('净投保量'), ~replace_na(.x, 0)))
# 转换ratio为百分比形式
column_to_scale <- colnames(area_order_daily_output)[
str_detect(colnames(area_order_daily_output), '占比')
]
for(column in column_to_scale) {
area_order_daily_output[[column]] <- scales::label_percent(
accuracy = 0.1, big.mark = ""
)(
as.numeric(area_order_daily_output[[column]])
) %>%
str_replace('Inf', '')
}
output_list[['按日统计']] <- area_order_daily_output %>% arrange(desc(合计净投保量))
# 按周统计 ----
district_order_weekly <- df_orders %>%
group_by(col_district, yr_week) %>%
mutate(orders_weekly = length(unique(col_order_item_id))) %>%
ungroup() %>%
select(yr_week, col_district, orders_weekly) %>%
distinct()
district_refund_order_weekly <- refund_orders %>%
group_by(col_district, yr_week) %>%
mutate(refund_orders_weekly = length(unique(col_order_item_id))) %>%
ungroup() %>%
select(yr_week, col_district, refund_orders_weekly) %>%
distinct()
district_order_weekly <- full_join(district_order_weekly, district_refund_order_weekly) %>%
# 替换NA为0
mutate(
orders_weekly = replace_na(orders_weekly, 0),
refund_orders_weekly = replace_na(refund_orders_weekly, 0)
) %>%
# 净投保量
mutate(net_orders = orders_weekly - refund_orders_weekly) %>%
# 净投保量占比
group_by(yr_week) %>%
mutate(net_orders_ratio = round(net_orders / sum(net_orders), 3)) %>%
ungroup() %>%
arrange(desc(yr_week), col_district)
# 对星期排序,即最终表格显示上线后的第几周
week_order <- select(district_order_weekly, yr_week) %>% distinct() %>% arrange(yr_week) %>%
mutate(week_order = 1:n())
district_order_weekly <- district_order_weekly %>% left_join(week_order)
# 准备转置成宽表格
district_order_weekly <- district_order_weekly %>%
select(
地区= col_district, 周 = week_order, 净投保量 = net_orders, 净投保量占比 = net_orders_ratio
)
district_order_weekly_output <- district_order_weekly %>%
# 添加合计
group_by(地区) %>%
summarise(合计净投保量 = sum(净投保量)) %>%
ungroup() %>%
mutate(合计净投保量占比 = round(合计净投保量/sum(合计净投保量), 3))
# 星期从大到小遍历(从近到远)
for(w in sort(unique(district_order_weekly$周), decreasing = TRUE)) {
tmp_district_order_weekly <- filter(district_order_weekly, 周 == !!w) %>%
mutate(周 = str_replace(周, '(.*)', '第\\1周')) %>%
pivot_wider(
names_from = 周, values_from = c(净投保量, 净投保量占比), names_glue = "{周}{.value}"
)
district_order_weekly_output <- left_join(
district_order_weekly_output, tmp_district_order_weekly, by = c('地区' = '地区')
)
}
# 替换NA为0
district_order_weekly_output <- district_order_weekly_output %>%
mutate(across(contains('净投保量'), ~replace_na(.x, 0)))
# 转换ratio为百分比形式
column_to_scale <- colnames(district_order_weekly_output)[
str_detect(colnames(district_order_weekly_output), '占比')
]
for(column in column_to_scale) {
district_order_weekly_output[[column]] <- scales::label_percent(
accuracy = 0.1, big.mark = ""
)(
as.numeric(district_order_weekly_output[[column]])
) %>%
str_replace('Inf', '')
}
output_list[['按周统计']] <- district_order_weekly_output %>% arrange(desc(合计净投保量))
# 按月统计 ----
district_order_monthly <- df_orders %>%
group_by(col_district, yr_mon) %>%
mutate(orders_monthly = length(unique(col_order_item_id))) %>%
ungroup() %>%
select(yr_mon, col_district, orders_monthly) %>%
distinct()
district_refund_order_monthly <- refund_orders %>%
group_by(col_district, yr_mon) %>%
mutate(refund_orders_monthly = length(unique(col_order_item_id))) %>%
ungroup() %>%
select(yr_mon, col_district, refund_orders_monthly) %>%
distinct()
district_order_monthly <- full_join(district_order_monthly, district_refund_order_monthly) %>%
# 替换NA为0
mutate(
orders_monthly = replace_na(orders_monthly, 0),
refund_orders_monthly = replace_na(refund_orders_monthly, 0)
) %>%
# 净投保量
mutate(net_orders = orders_monthly - refund_orders_monthly) %>%
# 净投保量占比
group_by(yr_mon) %>%
mutate(net_orders_ratio = round(net_orders / sum(net_orders), 3)) %>%
ungroup() %>%
arrange(yr_mon, col_district)
# 准备转置成宽表格
district_order_monthly <- district_order_monthly %>%
select(地区= col_district, 月份 = yr_mon, 净投保量 = net_orders,
净投保量占比 = net_orders_ratio) %>%
mutate(月份 = format(月份, format = "%Y年%m月"))
district_order_monthly_output <- district_order_monthly %>%
# 添加合计
group_by(地区) %>%
summarise(合计净投保量 = sum(净投保量)) %>%
ungroup() %>%
mutate(合计净投保量占比 = round(合计净投保量/sum(合计净投保量), 3))
# 月份从大到小遍历(从近到远)
for(m in sort(unique(district_order_monthly$月份), decreasing = TRUE)) {
tmp_district_order_monthly <- filter(district_order_monthly, 月份 == !!m) %>%
mutate(月份 = str_replace(月份, '(....)-(..)', '\\1年\\2月')) %>%
pivot_wider(
names_from = 月份, values_from = c(净投保量, 净投保量占比), names_glue = "{月份}{.value}"
)
district_order_monthly_output <- left_join(
district_order_monthly_output, tmp_district_order_monthly, by = c('地区' = '地区')
)
}
# 替换NA为0
district_order_monthly_output <- district_order_monthly_output %>%
mutate(across(contains('净投保量'), ~replace_na(.x, 0)))
# 转换ratio为百分比形式
column_to_scale <- colnames(district_order_monthly_output)[
str_detect(colnames(district_order_monthly_output), '占比')
]
for(column in column_to_scale) {
district_order_monthly_output[[column]] <- scales::label_percent(
accuracy = 0.1, big.mark = ""
)(
as.numeric(district_order_monthly_output[[column]])
) %>%
str_replace('Inf', '')
}
output_list[['按月统计']] <- district_order_monthly_output %>% arrange(desc(合计净投保量))
return(output_list)
}