forked from chengstone/cchess-zero
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpolicy_value_network.py
executable file
·215 lines (176 loc) · 10.3 KB
/
policy_value_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#coding:utf-8
import tensorflow as tf
import numpy as np
import os
class policy_value_network(object):
def __init__(self, res_block_nums = 7):
# self.ckpt = os.path.join(os.getcwd(), 'models/best_model.ckpt-13999') # TODO
self.save_dir = "./models"
self.is_logging = True
"""reset TF Graph"""
tf.reset_default_graph()
"""Creat a new graph for the network"""
# g = tf.Graph()
self.sess = tf.Session()
# self.sess = tf.InteractiveSession()
# Variables
self.filters_size = 128 # or 256
self.prob_size = 2086
self.digest = None
self.training = tf.placeholder(tf.bool, name='training')
self.inputs_ = tf.placeholder(tf.float32, [None, 9, 10, 14], name='inputs') # + 2 # TODO C plain x 2
self.c_l2 = 0.0001
self.momentum = 0.9
self.global_norm = 100
self.learning_rate = tf.placeholder(tf.float32, name='learning_rate') #0.001 #5e-3 #0.05 #
tf.summary.scalar('learning_rate', self.learning_rate)
# First block
self.pi_ = tf.placeholder(tf.float32, [None, self.prob_size], name='pi')
self.z_ = tf.placeholder(tf.float32, [None, 1], name='z')
# NWHC format
# batch, 9 * 10, 14 channels
# inputs_ = tf.reshape(self.inputs_, [-1, 9, 10, 14])
# data_format: A string, one of `channels_last` (default) or `channels_first`.
# The ordering of the dimensions in the inputs.
# `channels_last` corresponds to inputs with shape `(batch, width, height, channels)`
# while `channels_first` corresponds to inputs with shape `(batch, channels, width, height)`.
self.layer = tf.layers.conv2d(self.inputs_, self.filters_size, 3, padding='SAME') # filters 128(or 256)
self.layer = tf.contrib.layers.batch_norm(self.layer, center=False, epsilon=1e-5, fused=True,
is_training=self.training, activation_fn=tf.nn.relu) # epsilon = 0.25
# residual_block
with tf.name_scope("residual_block"):
for _ in range(res_block_nums):
self.layer = self.residual_block(self.layer)
# policy_head
with tf.name_scope("policy_head"):
self.policy_head = tf.layers.conv2d(self.layer, 2, 1, padding='SAME')
self.policy_head = tf.contrib.layers.batch_norm(self.policy_head, center=False, epsilon=1e-5, fused=True,
is_training=self.training, activation_fn=tf.nn.relu)
# print(self.policy_head.shape) # (?, 9, 10, 2)
self.policy_head = tf.reshape(self.policy_head, [-1, 9 * 10 * 2])
self.policy_head = tf.contrib.layers.fully_connected(self.policy_head, self.prob_size, activation_fn=None)
# self.prediction = tf.nn.softmax(self.policy_head)
# value_head
with tf.name_scope("value_head"):
self.value_head = tf.layers.conv2d(self.layer, 1, 1, padding='SAME')
self.value_head = tf.contrib.layers.batch_norm(self.value_head, center=False, epsilon=1e-5, fused=True,
is_training=self.training, activation_fn=tf.nn.relu)
# print(self.value_head.shape) # (?, 9, 10, 1)
self.value_head = tf.reshape(self.value_head, [-1, 9 * 10 * 1])
self.value_head = tf.contrib.layers.fully_connected(self.value_head, 256, activation_fn=tf.nn.relu)
self.value_head = tf.contrib.layers.fully_connected(self.value_head, 1, activation_fn=tf.nn.tanh)
# loss
with tf.name_scope("loss"):
self.policy_loss = tf.nn.softmax_cross_entropy_with_logits(labels=self.pi_, logits=self.policy_head)
self.policy_loss = tf.reduce_mean(self.policy_loss)
# self.value_loss = tf.squared_difference(self.z_, self.value_head)
self.value_loss = tf.losses.mean_squared_error(labels=self.z_, predictions=self.value_head)
self.value_loss = tf.reduce_mean(self.value_loss)
tf.summary.scalar('mse_loss', self.value_loss)
regularizer = tf.contrib.layers.l2_regularizer(scale=self.c_l2)
regular_variables = tf.trainable_variables()
self.l2_loss = tf.contrib.layers.apply_regularization(regularizer, regular_variables)
# self.loss = self.value_loss - self.policy_loss + self.l2_loss
self.loss = self.value_loss + self.policy_loss + self.l2_loss
tf.summary.scalar('loss', self.loss)
# train_op = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss)
self.global_step = tf.Variable(0, name="global_step", trainable=False)
# optimizer = tf.train.AdamOptimizer(self.learning_rate)
# gradients = optimizer.compute_gradients(self.loss)
# train_op = optimizer.apply_gradients(gradients, global_step=global_step)
# 优化损失
optimizer = tf.train.MomentumOptimizer(
learning_rate=self.learning_rate, momentum=self.momentum, use_nesterov=True)
# self.update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
# with tf.control_dependencies(self.update_ops):
# self.train_op = optimizer.minimize(self.loss, global_step=self.global_step)
# Accuracy
correct_prediction = tf.equal(tf.argmax(self.policy_head, 1), tf.argmax(self.pi_, 1))
correct_prediction = tf.cast(correct_prediction, tf.float32)
self.accuracy = tf.reduce_mean(correct_prediction, name='accuracy')
tf.summary.scalar('move_accuracy', self.accuracy)
# grads = self.average_gradients(tower_grads)
grads = optimizer.compute_gradients(self.loss)
# defensive step 2 to clip norm
clipped_grads, self.norm = tf.clip_by_global_norm(
[g for g, _ in grads], self.global_norm)
# defensive step 3 check NaN
# See: https://stackoverflow.com/questions/40701712/how-to-check-nan-in-gradients-in-tensorflow-when-updating
grad_check = [tf.check_numerics(g, message='NaN Found!') for g in clipped_grads]
with tf.control_dependencies(grad_check):
self.train_op = optimizer.apply_gradients(
zip(clipped_grads, [v for _, v in grads]),
global_step=self.global_step, name='train_step')
if self.is_logging:
for grad, var in grads:
if grad is not None:
tf.summary.histogram(var.op.name + '/gradients', grad)
for var in tf.trainable_variables():
tf.summary.histogram(var.op.name, var)
self.summaries_op = tf.summary.merge_all()
# Train Summaries
self.train_writer = tf.summary.FileWriter(
os.path.join(os.getcwd(), "cchesslogs/train"), self.sess.graph)
# Test summaries
self.test_writer = tf.summary.FileWriter(
os.path.join(os.getcwd(), "cchesslogs/test"), self.sess.graph)
self.sess.run(tf.global_variables_initializer())
# self.sess.run(tf.local_variables_initializer())
# self.sess.run(tf.initialize_all_variables())
self.saver = tf.train.Saver()
self.train_restore()
def residual_block(self, in_layer):
orig = tf.identity(in_layer)
layer = tf.layers.conv2d(in_layer, self.filters_size, 3, padding='SAME') # filters 128(or 256)
layer = tf.contrib.layers.batch_norm(layer, center=False, epsilon=1e-5, fused=True,
is_training=self.training, activation_fn=tf.nn.relu)
layer = tf.layers.conv2d(layer, self.filters_size, 3, padding='SAME') # filters 128(or 256)
layer = tf.contrib.layers.batch_norm(layer, center=False, epsilon=1e-5, fused=True, is_training=self.training)
out = tf.nn.relu(tf.add(orig, layer))
return out
def train_restore(self):
if not os.path.isdir(self.save_dir):
os.mkdir(self.save_dir)
checkpoint = tf.train.get_checkpoint_state(self.save_dir)
if checkpoint and checkpoint.model_checkpoint_path:
# self.saver.restore(self.sess, checkpoint.model_checkpoint_path)
self.saver.restore(self.sess, tf.train.latest_checkpoint(self.save_dir))
print("Successfully loaded:", tf.train.latest_checkpoint(self.save_dir))
# print("Successfully loaded:", checkpoint.model_checkpoint_path)
else:
print("Could not find old network weights")
def restore(self, file):
print("Restoring from {0}".format(file))
self.saver.restore(self.sess, file) # self.ckpt
def save(self, in_global_step):
# save_path = self.saver.save(self.sess, path, global_step=self.global_step)
save_path = self.saver.save(self.sess, os.path.join(self.save_dir, 'best_model.ckpt'),
global_step=in_global_step) #self.global_step
print("Model saved in file: {}".format(save_path))
def train_step(self, positions, probs, winners, learning_rate):
feed_dict = {
self.inputs_: positions,
self.training: True,
self.learning_rate: learning_rate,
self.pi_: probs,
self.z_: winners
}
_, accuracy, loss, global_step, summary = self.sess.run([self.train_op, self.accuracy, self.loss, self.global_step, self.summaries_op], feed_dict=feed_dict)
self.train_writer.add_summary(summary, global_step)
# print(accuracy)
# print(loss)
return accuracy, loss, global_step
#@profile
def forward(self, positions): # , probs, winners
feed_dict = {
self.inputs_: positions,
self.training: False
}
# ,
# self.pi_: probs,
# self.z_: winners
action_probs, value = self.sess.run([self.policy_head, self.value_head], feed_dict=feed_dict) # self.prediction
# print(action_probs.shape)
# print(value.shape)
return action_probs, value
# return action_probs, value