-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbits.c
418 lines (362 loc) · 11.5 KB
/
bits.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
/*
* CS:APP Data Lab
*
* <Please put your name and userid here>
*
* bits.c - Source file with your solutions to the Lab.
* This is the file you will hand in to your instructor.
*
* WARNING: Do not include the <stdio.h> header; it confuses the dlc
* compiler. You can still use printf for debugging without including
* <stdio.h>, although you might get a compiler warning. In general,
* it's not good practice to ignore compiler warnings, but in this
* case it's OK.
*/
#if 0
/*
* Instructions to Students:
*
* STEP 1: Read the following instructions carefully.
*/
You will provide your solution to the Data Lab by
editing the collection of functions in this source file.
INTEGER CODING RULES:
Replace the "return" statement in each function with one
or more lines of C code that implements the function. Your code
must conform to the following style:
int Funct(arg1, arg2, ...) {
/* brief description of how your implementation works */
int var1 = Expr1;
...
int varM = ExprM;
varJ = ExprJ;
...
varN = ExprN;
return ExprR;
}
Each "Expr" is an expression using ONLY the following:
1. Integer constants 0 through 255 (0xFF), inclusive. You are
not allowed to use big constants such as 0xffffffff.
2. Function arguments and local variables (no global variables).
3. Unary integer operations ! ~
4. Binary integer operations & ^ | + << >>
Some of the problems restrict the set of allowed operators even further.
Each "Expr" may consist of multiple operators. You are not restricted to
one operator per line.
You are expressly forbidden to:
1. Use any control constructs such as if, do, while, for, switch, etc.
2. Define or use any macros.
3. Define any additional functions in this file.
4. Call any functions.
5. Use any other operations, such as &&, ||, -, or ?:
6. Use any form of casting.
7. Use any data type other than int. This implies that you
cannot use arrays, structs, or unions.
You may assume that your machine:
1. Uses 2s complement, 32-bit representations of integers.
2. Performs right shifts arithmetically.
3. Has unpredictable behavior when shifting an integer by more
than the word size.
EXAMPLES OF ACCEPTABLE CODING STYLE:
/*
* pow2plus1 - returns 2^x + 1, where 0 <= x <= 31
*/
int pow2plus1(int x) {
/* exploit ability of shifts to compute powers of 2 */
return (1 << x) + 1;
}
/*
* pow2plus4 - returns 2^x + 4, where 0 <= x <= 31
*/
int pow2plus4(int x) {
/* exploit ability of shifts to compute powers of 2 */
int result = (1 << x);
result += 4;
return result;
}
FLOATING POINT CODING RULES
For the problems that require you to implent floating-point operations,
the coding rules are less strict. You are allowed to use looping and
conditional control. You are allowed to use both ints and unsigneds.
You can use arbitrary integer and unsigned constants.
You are expressly forbidden to:
1. Define or use any macros.
2. Define any additional functions in this file.
3. Call any functions.
4. Use any form of casting.
5. Use any data type other than int or unsigned. This means that you
cannot use arrays, structs, or unions.
6. Use any floating point data types, operations, or constants.
NOTES:
1. Use the dlc (data lab checker) compiler (described in the handout) to
check the legality of your solutions.
2. Each function has a maximum number of operators (! ~ & ^ | + << >>)
that you are allowed to use for your implementation of the function.
The max operator count is checked by dlc. Note that '=' is not
counted; you may use as many of these as you want without penalty.
3. Use the btest test harness to check your functions for correctness.
4. Use the BDD checker to formally verify your functions
5. The maximum number of ops for each function is given in the
header comment for each function. If there are any inconsistencies
between the maximum ops in the writeup and in this file, consider
this file the authoritative source.
/*
* STEP 2: Modify the following functions according the coding rules.
*
* IMPORTANT. TO AVOID GRADING SURPRISES:
* 1. Use the dlc compiler to check that your solutions conform
* to the coding rules.
* 2. Use the BDD checker to formally verify that your solutions produce
* the correct answers.
*/
#endif
/*
* bitAnd - x&y using only ~ and |
* Example: bitAnd(6, 5) = 4
* Legal ops: ~ |
* Max ops: 8
* Rating: 1
*/
int bitAnd(int x, int y) {
return ~(~x | ~y);
}
/*
* getByte - Extract byte n from word x
* Bytes numbered from 0 (LSB) to 3 (MSB)
* Examples: getByte(0x12345678,1) = 0x56
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 6
* Rating: 2
*/
int getByte(int x, int n) {
return x >> (n << 3) & 0xff;
}
// 先把x移n<<3(即8n)个位 再用x&0xFF生成一个由x的最低有效字节组成的字
/*
* logicalShift - shift x to the right by n, using a logical shift
* Can assume that 0 <= n <= 31
* Examples: logicalShift(0x87654321,4) = 0x08765432
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 20
* Rating: 3
*/
int logicalShift(int x, int n) {
return x >> n & ~(((1 << 31) >> n) << 1);
}
// 先x>>n(算术右移) 在利用1移位把前面移位的结果都变成0
/*
* bitCount - returns count of number of 1's in word
* Examples: bitCount(5) = 2, bitCount(7) = 3
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 40
* Rating: 4
*/
int bitCount(int x) {
int tmp = 0x01;
tmp = tmp | (tmp << 8);
tmp = tmp | (tmp << 16);
int result = tmp & x;
result += tmp & (x >> 1);
result += tmp & (x >> 2);
result += tmp & (x >> 3);
result += tmp & (x >> 4);
result += tmp & (x >> 5);
result += tmp & (x >> 6);
result += tmp & (x >> 7);
result += (result >> 16);
result += (result >> 8);
return result&0xff;
}
// 先分成4个部分(每部分8位)进行计算 然后再把4部分的结果通过对半得出最后的结果
// 按照8位的原因大概是结果最大32, 2 4位都不够 一定要&0xff 取最低有效字节
/*
* bang - Compute !x without using !
* Examples: bang(3) = 0, bang(0) = 1
* Legal ops: ~ & ^ | + << >>
* Max ops: 12
* Rating: 4
*/
int bang(int x) {
return (((~x + 1) | x) >> 31) + 1;
}
// 关键是判断0 除了0其他数字与其相反数首位(符号位)一定不同 所以按位或的话只有零的首位还是零
// 如果是0 则>>31的结果为0 如果不是0则结果为-1(所有的位都是1)再加1
// 位运算求相反数: ~x+1
// 注意运算符优先级……不确定的最好都加上括号
/*
* tmin - return minimum two's complement integer
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 4
* Rating: 1
*/
int tmin(void) {
return 1 << 31;
}
// 最小的二进制补码 也就是0x80000000
/*
* fitsBits - return 1 if x can be represented as an
* n-bit, two's complement integer.
* 1 <= n <= 32
* Examples: fitsBits(5,3) = 0, fitsBits(-4,3) = 1
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 15
* Rating: 2
*/
int fitsBits(int x, int n) {
int shift = ~n + 33; // 即32-n
return !(x ^ ((x << shift) >> shift));
//若前32-n位的都相同则可以
// int sign = x >> 31; //得到其符号位(0或-1)
// return !((-x & sign) + (x & ~sign) >> (n + ~0))
}
/*
* divpwr2 - Compute x/(2^n), for 0 <= n <= 30
* Round toward zero
* Examples: divpwr2(15,1) = 7, divpwr2(-33,4) = -2
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 15
* Rating: 2
*/
int divpwr2(int x, int n) {
int sign = x >> 31;
int result = x + (sign & ((1 << n) + (~0)));
return result >> n;
}
// 若x>=0 就是x >> n
// 若x<0 不管符号位的话就是 (x+(1 << n) -1) >> n
/*
* negate - return -x
* Example: negate(1) = -1.
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 5
* Rating: 2
*/
int negate(int x) {
return ~x+1;
}
// 取相反数: 按位取反然后+1
/*
* isPositive - return 1 if x > 0, return 0 otherwise
* Example: isPositive(-1) = 0.
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 8
* Rating: 3
*/
int isPositive(int x) {
int sign = x >> 31;
int zero = !x; // 是否是0
return !(sign | zero);
}
/*
* isLessOrEqual - if x <= y then return 1, else return 0
* Example: isLessOrEqual(4,5) = 1.
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 24
* Rating: 3
*/
int isLessOrEqual(int x, int y) {
int signx = x >> 31;
int signy = y >> 31;
int sign = !(signx ^ signy); //相同的话 1
int tmp = (x + ~y) >> 31; // x-y 的符号
return (sign & tmp) | (!sign & signx);
}
// 分类 如果同号:右边式子结果为0 最终由x-y的符号决定
// 如果异号: 若x<0则返回1 (左0右1结果1) 若x>0 则由x-y符号决定(右0)
/*
* ilog2 - return floor(log base 2 of x), where x > 0
* Example: ilog2(16) = 4
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 90
* Rating: 4
*/
int ilog2(int x) {
int log;
log = (!!(x >> 16)) << 4; // 判断是不是1 如果是就乘上2^4 下同
log = log + ((!!(x >> (log + 8))) << 3);
log = log + ((!!(x >> (log + 4))) << 2);
log = log + ((!!(x >> (log + 2))) << 1);
log = log + (!!(x >> (log + 1)));
return log;
}
// 通过两次取非来转换成布尔值(取值只有0和1)
// 每次分成两半,搜索最高位为1的位置
//
/*
* float_neg - Return bit-level equivalent of expression -f for
* floating point argument f.
* Both the argument and result are passed as unsigned int's, but
* they are to be interpreted as the bit-level representations of
* single-precision floating point values.
* When argument is NaN, return argument.
* Legal ops: Any integer/unsigned operations incl. ||, &&. also if, while
* Max ops: 10
* Rating: 2
*/
unsigned float_neg(unsigned uf) {
unsigned tmp = 0x80000000;
unsigned NaN = 0x7FC00000;
unsigned inf = 0xFFC00000;
if(uf == NaN || uf == inf){
return uf;
}
return uf ^ tmp;
}
// 取反 注意特殊之
/*
* float_i2f - Return bit-level equivalent of expression (float) x
* Result is returned as unsigned int, but
* it is to be interpreted as the bit-level representation of a
* single-precision floating point values.
* Legal ops: Any integer/unsigned operations incl. ||, &&. also if, while
* Max ops: 30
* Rating: 4
*/
unsigned float_i2f(int x) {
unsigned sign = 0, shiftLeft = 0, flag = 0, tmp;
unsigned result = x;
if(!x){
return 0;
} else if(x < 0){
sign = 0x80000000;
result = -x;
}
while(1){
tmp = result;
result <<= 1;
shiftLeft++;
if( tmp & 0x80000000 ){
break;
}
}
if((result & 0x01FF) > 0x0100){
flag = 1;
}else if((result & 0x03FF) == 0x0300){
flag = 1;
}else{
flag = 0;
}
return sign + (result >> 9) + ((159 - shiftLeft) << 23) + flag;
}
/*
* float_twice - Return bit-level equivalent of expression 2*f for
* floating point argument f.
* Both the argument and result are passed as unsigned int's, but
* they are to be interpreted as the bit-level representation of
* single-precision floating point values.
* When argument is NaN, return argument
* Legal ops: Any integer/unsigned operations incl. ||, &&. also if, while
* Max ops: 30
* Rating: 4
*/
unsigned float_twice(unsigned uf) {
unsigned expo = uf & 0x7F800000;
unsigned sign = uf & 0x80000000;
unsigned frac = uf & 0x007FFFFF;
if(expo == 0){
uf = (frac << 1) | sign;
} else if (expo != 0x7F800000) {
uf = uf + 0x00800000;
}
return uf;
}