Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

The Encodec 24k_240 training loss are very large ! #27

Open
GitYesm opened this issue Jun 21, 2023 · 3 comments
Open

The Encodec 24k_240 training loss are very large ! #27

GitYesm opened this issue Jun 21, 2023 · 3 comments

Comments

@GitYesm
Copy link

GitYesm commented Jun 21, 2023

Hi yangdongchao!
When I train the Encodec 24k_240 in 1kbps during the early stages, the model exhibits very high loss and significant oscillation. Is this a normal phenomenon?

The train process as follows:

<epoch:8, iter:8250, total_loss_g:20.7092, adv_g_loss:2.1068, feat_loss:15.4339, rec_loss:3.1594, commit_loss:0.0000, loss_d:1.2053>, d_weight: 1.0000
 46%|██████████████████████████████████████████████████▋                                                            | 8259/18075 [1:34:07<1:51:14,  1.47it/s]<epoch:8, iter:8260, total_loss_g:1448.0029, adv_g_loss:2.0795, feat_loss:1439.2244, rec_loss:6.6940, commit_loss:0.0000, loss_d:0.5836>, d_weight: 1.0000
 46%|██████████████████████████████████████████████████▊                                                            | 8269/18075 [1:34:15<1:51:27,  1.47it/s]<epoch:8, iter:8270, total_loss_g:588.6943, adv_g_loss:2.1234, feat_loss:577.0657, rec_loss:9.4847, commit_loss:0.0000, loss_d:0.8170>, d_weight: 1.0000
 46%|██████████████████████████████████████████████████▊                                                            | 8279/18075 [1:34:21<1:51:37,  1.46it/s]<epoch:8, iter:8280, total_loss_g:316.6624, adv_g_loss:2.1950, feat_loss:306.5796, rec_loss:7.8813, commit_loss:0.0000, loss_d:0.8256>, d_weight: 1.0000
 46%|██████████████████████████████████████████████████▉                                                            | 8289/18075 [1:34:29<1:51:56,  1.46it/s]<epoch:8, iter:8290, total_loss_g:6425.9717, adv_g_loss:2.1269, feat_loss:6398.3364, rec_loss:25.5026, commit_loss:0.0000, loss_d:0.9661>, d_weight: 1.0000
 46%|██████████████████████████████████████████████████▉                                                            | 8299/18075 [1:34:36<1:52:12,  1.45it/s]<epoch:8, iter:8300, total_loss_g:2867.6846, adv_g_loss:2.2306, feat_loss:2847.7778, rec_loss:17.6676, commit_loss:0.0000, loss_d:0.1482>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████                                                            | 8309/18075 [1:34:41<1:52:00,  1.45it/s]<epoch:8, iter:8310, total_loss_g:4510.4780, adv_g_loss:1.9837, feat_loss:4476.9551, rec_loss:31.5352, commit_loss:0.0000, loss_d:1.1329>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████                                                            | 8319/18075 [1:34:47<1:51:03,  1.46it/s]<epoch:8, iter:8320, total_loss_g:3507.8118, adv_g_loss:1.9984, feat_loss:3480.6077, rec_loss:25.1733, commit_loss:0.0000, loss_d:1.0020>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████▏                                                           | 8329/18075 [1:34:56<1:50:40,  1.47it/s]<epoch:8, iter:8330, total_loss_g:17506.3809, adv_g_loss:1.9943, feat_loss:17494.1309, rec_loss:10.2544, commit_loss:0.0000, loss_d:0.8280>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████▏                                                           | 8339/18075 [1:35:01<1:50:31,  1.47it/s]<epoch:8, iter:8340, total_loss_g:30781.5254, adv_g_loss:2.1298, feat_loss:30761.4688, rec_loss:17.8869, commit_loss:0.0000, loss_d:0.4086>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████▎                                                           | 8349/18075 [1:35:08<1:50:59,  1.46it/s]<epoch:8, iter:8350, total_loss_g:361517.0312, adv_g_loss:2.1185, feat_loss:361338.4688, rec_loss:176.4266, commit_loss:0.0000, loss_d:0.2256>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████▎                                                           | 8359/18075 [1:35:15<1:49:04,  1.48it/s]<epoch:8, iter:8360, total_loss_g:32.4452, adv_g_loss:2.1076, feat_loss:28.3426, rec_loss:1.9913, commit_loss:0.0000, loss_d:1.3850>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████▍                                                           | 8369/18075 [1:35:23<1:50:03,  1.47it/s]<epoch:8, iter:8370, total_loss_g:304.8588, adv_g_loss:2.2852, feat_loss:299.7329, rec_loss:2.8386, commit_loss:0.0000, loss_d:1.0175>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████▍                                                           | 8379/18075 [1:35:30<1:50:01,  1.47it/s]<epoch:8, iter:8380, total_loss_g:34873.7617, adv_g_loss:2.1054, feat_loss:34844.2266, rec_loss:27.4251, commit_loss:0.0000, loss_d:0.3069>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████▌                                                           | 8389/18075 [1:35:37<1:50:02,  1.47it/s]<epoch:8, iter:8390, total_loss_g:40341.5039, adv_g_loss:2.2593, feat_loss:40214.2148, rec_loss:125.0235, commit_loss:0.0000, loss_d:0.6393>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████▌                                                           | 8399/18075 [1:35:43<1:50:03,  1.47it/s]<epoch:8, iter:8400, total_loss_g:184210.6719, adv_g_loss:2.0305, feat_loss:184145.6875, rec_loss:62.9335, commit_loss:0.0000, loss_d:1.0710>, d_weight: 1.0000
 47%|███████████████████████████████████████████████████▋                                                           | 8409/18075 [1:35:49<1:48:46,  1.48it/s]<epoch:8, iter:8410, total_loss_g:1336.8246, adv_g_loss:2.1409, feat_loss:1317.9712, rec_loss:16.7082, commit_loss:0.0000, loss_d:0.9688>, d_weight: 1.0000
 47%|███████████████████████████████████████████████████▋                                                           | 8419/18075 [1:35:57<1:49:31,  1.47it/s]<epoch:8, iter:8420, total_loss_g:13977.8945, adv_g_loss:2.2973, feat_loss:13938.0557, rec_loss:37.5274, commit_loss:0.0000, loss_d:0.2749>, d_weight: 1.0000
 47%|███████████████████████████████████████████████████▊                                                           | 8429/18075 [1:36:04<1:49:48,  1.46it/s]<epoch:8, iter:8430, total_loss_g:3301.4082, adv_g_loss:2.1330, feat_loss:3262.6450, rec_loss:36.6189, commit_loss:0.0000, loss_d:0.6580>, d_weight: 1.0000
 47%|███████████████████████████████████████████████████▊                                                           | 8438/18075 [1:36:10<1:49:44,  1.46it/s]

The valid process as follows:

2023-06-20-12-58: <epoch:0, total_loss_g_valid:155.6049, recon_loss_valid:21.3568, adversarial_loss_valid:1.6380, feature_loss_valid:132.6101, commit_loss_valid:0.0000, valid_loss_d:1.2365, best_epoch:0>
2023-06-20-16-30: <epoch:1, total_loss_g_valid:508.1316, recon_loss_valid:21.7350, adversarial_loss_valid:1.7627, feature_loss_valid:484.6339, commit_loss_valid:0.0000, valid_loss_d:1.0418, best_epoch:0>
2023-06-20-20-02: <epoch:2, total_loss_g_valid:302.2671, recon_loss_valid:20.5088, adversarial_loss_valid:2.1077, feature_loss_valid:279.6506, commit_loss_valid:0.0000, valid_loss_d:1.1599, best_epoch:2>
2023-06-20-23-34: <epoch:3, total_loss_g_valid:1090.3598, recon_loss_valid:20.4632, adversarial_loss_valid:2.0897, feature_loss_valid:1067.8068, commit_loss_valid:0.0000, valid_loss_d:0.9414, best_epoch:3>
2023-06-21-03-07: <epoch:4, total_loss_g_valid:1666.9553, recon_loss_valid:21.7679, adversarial_loss_valid:2.0294, feature_loss_valid:1643.1580, commit_loss_valid:0.0000, valid_loss_d:1.0660, best_epoch:3>
2023-06-21-06-39: <epoch:5, total_loss_g_valid:1438.0695, recon_loss_valid:21.1533, adversarial_loss_valid:2.1540, feature_loss_valid:1414.7622, commit_loss_valid:0.0000, valid_loss_d:1.1304, best_epoch:3>
2023-06-21-10-11: <epoch:6, total_loss_g_valid:918.1003, recon_loss_valid:21.4004, adversarial_loss_valid:2.1242, feature_loss_valid:894.5757, commit_loss_valid:0.0000, valid_loss_d:1.1136, best_epoch:3>
2023-06-21-13-43: <epoch:7, total_loss_g_valid:1691.1200, recon_loss_valid:20.3575, adversarial_loss_valid:2.1024, feature_loss_valid:1668.6601, commit_loss_valid:0.0000, valid_loss_d:0.9036, best_epoch:7>
@GitYesm
Copy link
Author

GitYesm commented Jun 21, 2023

Looking forward to your reply

@yangdongchao
Copy link
Owner

Hi yangdongchao! When I train the Encodec 24k_240 in 1kbps during the early stages, the model exhibits very high loss and significant oscillation. Is this a normal phenomenon?

The train process as follows:

<epoch:8, iter:8250, total_loss_g:20.7092, adv_g_loss:2.1068, feat_loss:15.4339, rec_loss:3.1594, commit_loss:0.0000, loss_d:1.2053>, d_weight: 1.0000
 46%|██████████████████████████████████████████████████▋                                                            | 8259/18075 [1:34:07<1:51:14,  1.47it/s]<epoch:8, iter:8260, total_loss_g:1448.0029, adv_g_loss:2.0795, feat_loss:1439.2244, rec_loss:6.6940, commit_loss:0.0000, loss_d:0.5836>, d_weight: 1.0000
 46%|██████████████████████████████████████████████████▊                                                            | 8269/18075 [1:34:15<1:51:27,  1.47it/s]<epoch:8, iter:8270, total_loss_g:588.6943, adv_g_loss:2.1234, feat_loss:577.0657, rec_loss:9.4847, commit_loss:0.0000, loss_d:0.8170>, d_weight: 1.0000
 46%|██████████████████████████████████████████████████▊                                                            | 8279/18075 [1:34:21<1:51:37,  1.46it/s]<epoch:8, iter:8280, total_loss_g:316.6624, adv_g_loss:2.1950, feat_loss:306.5796, rec_loss:7.8813, commit_loss:0.0000, loss_d:0.8256>, d_weight: 1.0000
 46%|██████████████████████████████████████████████████▉                                                            | 8289/18075 [1:34:29<1:51:56,  1.46it/s]<epoch:8, iter:8290, total_loss_g:6425.9717, adv_g_loss:2.1269, feat_loss:6398.3364, rec_loss:25.5026, commit_loss:0.0000, loss_d:0.9661>, d_weight: 1.0000
 46%|██████████████████████████████████████████████████▉                                                            | 8299/18075 [1:34:36<1:52:12,  1.45it/s]<epoch:8, iter:8300, total_loss_g:2867.6846, adv_g_loss:2.2306, feat_loss:2847.7778, rec_loss:17.6676, commit_loss:0.0000, loss_d:0.1482>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████                                                            | 8309/18075 [1:34:41<1:52:00,  1.45it/s]<epoch:8, iter:8310, total_loss_g:4510.4780, adv_g_loss:1.9837, feat_loss:4476.9551, rec_loss:31.5352, commit_loss:0.0000, loss_d:1.1329>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████                                                            | 8319/18075 [1:34:47<1:51:03,  1.46it/s]<epoch:8, iter:8320, total_loss_g:3507.8118, adv_g_loss:1.9984, feat_loss:3480.6077, rec_loss:25.1733, commit_loss:0.0000, loss_d:1.0020>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████▏                                                           | 8329/18075 [1:34:56<1:50:40,  1.47it/s]<epoch:8, iter:8330, total_loss_g:17506.3809, adv_g_loss:1.9943, feat_loss:17494.1309, rec_loss:10.2544, commit_loss:0.0000, loss_d:0.8280>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████▏                                                           | 8339/18075 [1:35:01<1:50:31,  1.47it/s]<epoch:8, iter:8340, total_loss_g:30781.5254, adv_g_loss:2.1298, feat_loss:30761.4688, rec_loss:17.8869, commit_loss:0.0000, loss_d:0.4086>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████▎                                                           | 8349/18075 [1:35:08<1:50:59,  1.46it/s]<epoch:8, iter:8350, total_loss_g:361517.0312, adv_g_loss:2.1185, feat_loss:361338.4688, rec_loss:176.4266, commit_loss:0.0000, loss_d:0.2256>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████▎                                                           | 8359/18075 [1:35:15<1:49:04,  1.48it/s]<epoch:8, iter:8360, total_loss_g:32.4452, adv_g_loss:2.1076, feat_loss:28.3426, rec_loss:1.9913, commit_loss:0.0000, loss_d:1.3850>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████▍                                                           | 8369/18075 [1:35:23<1:50:03,  1.47it/s]<epoch:8, iter:8370, total_loss_g:304.8588, adv_g_loss:2.2852, feat_loss:299.7329, rec_loss:2.8386, commit_loss:0.0000, loss_d:1.0175>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████▍                                                           | 8379/18075 [1:35:30<1:50:01,  1.47it/s]<epoch:8, iter:8380, total_loss_g:34873.7617, adv_g_loss:2.1054, feat_loss:34844.2266, rec_loss:27.4251, commit_loss:0.0000, loss_d:0.3069>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████▌                                                           | 8389/18075 [1:35:37<1:50:02,  1.47it/s]<epoch:8, iter:8390, total_loss_g:40341.5039, adv_g_loss:2.2593, feat_loss:40214.2148, rec_loss:125.0235, commit_loss:0.0000, loss_d:0.6393>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████▌                                                           | 8399/18075 [1:35:43<1:50:03,  1.47it/s]<epoch:8, iter:8400, total_loss_g:184210.6719, adv_g_loss:2.0305, feat_loss:184145.6875, rec_loss:62.9335, commit_loss:0.0000, loss_d:1.0710>, d_weight: 1.0000
 47%|███████████████████████████████████████████████████▋                                                           | 8409/18075 [1:35:49<1:48:46,  1.48it/s]<epoch:8, iter:8410, total_loss_g:1336.8246, adv_g_loss:2.1409, feat_loss:1317.9712, rec_loss:16.7082, commit_loss:0.0000, loss_d:0.9688>, d_weight: 1.0000
 47%|███████████████████████████████████████████████████▋                                                           | 8419/18075 [1:35:57<1:49:31,  1.47it/s]<epoch:8, iter:8420, total_loss_g:13977.8945, adv_g_loss:2.2973, feat_loss:13938.0557, rec_loss:37.5274, commit_loss:0.0000, loss_d:0.2749>, d_weight: 1.0000
 47%|███████████████████████████████████████████████████▊                                                           | 8429/18075 [1:36:04<1:49:48,  1.46it/s]<epoch:8, iter:8430, total_loss_g:3301.4082, adv_g_loss:2.1330, feat_loss:3262.6450, rec_loss:36.6189, commit_loss:0.0000, loss_d:0.6580>, d_weight: 1.0000
 47%|███████████████████████████████████████████████████▊                                                           | 8438/18075 [1:36:10<1:49:44,  1.46it/s]

The valid process as follows:

2023-06-20-12-58: <epoch:0, total_loss_g_valid:155.6049, recon_loss_valid:21.3568, adversarial_loss_valid:1.6380, feature_loss_valid:132.6101, commit_loss_valid:0.0000, valid_loss_d:1.2365, best_epoch:0>
2023-06-20-16-30: <epoch:1, total_loss_g_valid:508.1316, recon_loss_valid:21.7350, adversarial_loss_valid:1.7627, feature_loss_valid:484.6339, commit_loss_valid:0.0000, valid_loss_d:1.0418, best_epoch:0>
2023-06-20-20-02: <epoch:2, total_loss_g_valid:302.2671, recon_loss_valid:20.5088, adversarial_loss_valid:2.1077, feature_loss_valid:279.6506, commit_loss_valid:0.0000, valid_loss_d:1.1599, best_epoch:2>
2023-06-20-23-34: <epoch:3, total_loss_g_valid:1090.3598, recon_loss_valid:20.4632, adversarial_loss_valid:2.0897, feature_loss_valid:1067.8068, commit_loss_valid:0.0000, valid_loss_d:0.9414, best_epoch:3>
2023-06-21-03-07: <epoch:4, total_loss_g_valid:1666.9553, recon_loss_valid:21.7679, adversarial_loss_valid:2.0294, feature_loss_valid:1643.1580, commit_loss_valid:0.0000, valid_loss_d:1.0660, best_epoch:3>
2023-06-21-06-39: <epoch:5, total_loss_g_valid:1438.0695, recon_loss_valid:21.1533, adversarial_loss_valid:2.1540, feature_loss_valid:1414.7622, commit_loss_valid:0.0000, valid_loss_d:1.1304, best_epoch:3>
2023-06-21-10-11: <epoch:6, total_loss_g_valid:918.1003, recon_loss_valid:21.4004, adversarial_loss_valid:2.1242, feature_loss_valid:894.5757, commit_loss_valid:0.0000, valid_loss_d:1.1136, best_epoch:3>
2023-06-21-13-43: <epoch:7, total_loss_g_valid:1691.1200, recon_loss_valid:20.3575, adversarial_loss_valid:2.1024, feature_loss_valid:1668.6601, commit_loss_valid:0.0000, valid_loss_d:0.9036, best_epoch:7>

It seems something wrong.

@GitYesm
Copy link
Author

GitYesm commented Jun 25, 2023

Model training doesn't look very stable ,especially for the SoundStream model, which adds more discriminators in attempt to improve quality, it also makes training more difficult.

I think some ideas provided by RVQ-GAN can improve your model

Hi yangdongchao! When I train the Encodec 24k_240 in 1kbps during the early stages, the model exhibits very high loss and significant oscillation. Is this a normal phenomenon?

The train process as follows:

<epoch:8, iter:8250, total_loss_g:20.7092, adv_g_loss:2.1068, feat_loss:15.4339, rec_loss:3.1594, commit_loss:0.0000, loss_d:1.2053>, d_weight: 1.0000
 46%|██████████████████████████████████████████████████▋                                                            | 8259/18075 [1:34:07<1:51:14,  1.47it/s]<epoch:8, iter:8260, total_loss_g:1448.0029, adv_g_loss:2.0795, feat_loss:1439.2244, rec_loss:6.6940, commit_loss:0.0000, loss_d:0.5836>, d_weight: 1.0000
 46%|██████████████████████████████████████████████████▊                                                            | 8269/18075 [1:34:15<1:51:27,  1.47it/s]<epoch:8, iter:8270, total_loss_g:588.6943, adv_g_loss:2.1234, feat_loss:577.0657, rec_loss:9.4847, commit_loss:0.0000, loss_d:0.8170>, d_weight: 1.0000
 46%|██████████████████████████████████████████████████▊                                                            | 8279/18075 [1:34:21<1:51:37,  1.46it/s]<epoch:8, iter:8280, total_loss_g:316.6624, adv_g_loss:2.1950, feat_loss:306.5796, rec_loss:7.8813, commit_loss:0.0000, loss_d:0.8256>, d_weight: 1.0000
 46%|██████████████████████████████████████████████████▉                                                            | 8289/18075 [1:34:29<1:51:56,  1.46it/s]<epoch:8, iter:8290, total_loss_g:6425.9717, adv_g_loss:2.1269, feat_loss:6398.3364, rec_loss:25.5026, commit_loss:0.0000, loss_d:0.9661>, d_weight: 1.0000
 46%|██████████████████████████████████████████████████▉                                                            | 8299/18075 [1:34:36<1:52:12,  1.45it/s]<epoch:8, iter:8300, total_loss_g:2867.6846, adv_g_loss:2.2306, feat_loss:2847.7778, rec_loss:17.6676, commit_loss:0.0000, loss_d:0.1482>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████                                                            | 8309/18075 [1:34:41<1:52:00,  1.45it/s]<epoch:8, iter:8310, total_loss_g:4510.4780, adv_g_loss:1.9837, feat_loss:4476.9551, rec_loss:31.5352, commit_loss:0.0000, loss_d:1.1329>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████                                                            | 8319/18075 [1:34:47<1:51:03,  1.46it/s]<epoch:8, iter:8320, total_loss_g:3507.8118, adv_g_loss:1.9984, feat_loss:3480.6077, rec_loss:25.1733, commit_loss:0.0000, loss_d:1.0020>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████▏                                                           | 8329/18075 [1:34:56<1:50:40,  1.47it/s]<epoch:8, iter:8330, total_loss_g:17506.3809, adv_g_loss:1.9943, feat_loss:17494.1309, rec_loss:10.2544, commit_loss:0.0000, loss_d:0.8280>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████▏                                                           | 8339/18075 [1:35:01<1:50:31,  1.47it/s]<epoch:8, iter:8340, total_loss_g:30781.5254, adv_g_loss:2.1298, feat_loss:30761.4688, rec_loss:17.8869, commit_loss:0.0000, loss_d:0.4086>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████▎                                                           | 8349/18075 [1:35:08<1:50:59,  1.46it/s]<epoch:8, iter:8350, total_loss_g:361517.0312, adv_g_loss:2.1185, feat_loss:361338.4688, rec_loss:176.4266, commit_loss:0.0000, loss_d:0.2256>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████▎                                                           | 8359/18075 [1:35:15<1:49:04,  1.48it/s]<epoch:8, iter:8360, total_loss_g:32.4452, adv_g_loss:2.1076, feat_loss:28.3426, rec_loss:1.9913, commit_loss:0.0000, loss_d:1.3850>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████▍                                                           | 8369/18075 [1:35:23<1:50:03,  1.47it/s]<epoch:8, iter:8370, total_loss_g:304.8588, adv_g_loss:2.2852, feat_loss:299.7329, rec_loss:2.8386, commit_loss:0.0000, loss_d:1.0175>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████▍                                                           | 8379/18075 [1:35:30<1:50:01,  1.47it/s]<epoch:8, iter:8380, total_loss_g:34873.7617, adv_g_loss:2.1054, feat_loss:34844.2266, rec_loss:27.4251, commit_loss:0.0000, loss_d:0.3069>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████▌                                                           | 8389/18075 [1:35:37<1:50:02,  1.47it/s]<epoch:8, iter:8390, total_loss_g:40341.5039, adv_g_loss:2.2593, feat_loss:40214.2148, rec_loss:125.0235, commit_loss:0.0000, loss_d:0.6393>, d_weight: 1.0000
 46%|███████████████████████████████████████████████████▌                                                           | 8399/18075 [1:35:43<1:50:03,  1.47it/s]<epoch:8, iter:8400, total_loss_g:184210.6719, adv_g_loss:2.0305, feat_loss:184145.6875, rec_loss:62.9335, commit_loss:0.0000, loss_d:1.0710>, d_weight: 1.0000
 47%|███████████████████████████████████████████████████▋                                                           | 8409/18075 [1:35:49<1:48:46,  1.48it/s]<epoch:8, iter:8410, total_loss_g:1336.8246, adv_g_loss:2.1409, feat_loss:1317.9712, rec_loss:16.7082, commit_loss:0.0000, loss_d:0.9688>, d_weight: 1.0000
 47%|███████████████████████████████████████████████████▋                                                           | 8419/18075 [1:35:57<1:49:31,  1.47it/s]<epoch:8, iter:8420, total_loss_g:13977.8945, adv_g_loss:2.2973, feat_loss:13938.0557, rec_loss:37.5274, commit_loss:0.0000, loss_d:0.2749>, d_weight: 1.0000
 47%|███████████████████████████████████████████████████▊                                                           | 8429/18075 [1:36:04<1:49:48,  1.46it/s]<epoch:8, iter:8430, total_loss_g:3301.4082, adv_g_loss:2.1330, feat_loss:3262.6450, rec_loss:36.6189, commit_loss:0.0000, loss_d:0.6580>, d_weight: 1.0000
 47%|███████████████████████████████████████████████████▊                                                           | 8438/18075 [1:36:10<1:49:44,  1.46it/s]

The valid process as follows:

2023-06-20-12-58: <epoch:0, total_loss_g_valid:155.6049, recon_loss_valid:21.3568, adversarial_loss_valid:1.6380, feature_loss_valid:132.6101, commit_loss_valid:0.0000, valid_loss_d:1.2365, best_epoch:0>
2023-06-20-16-30: <epoch:1, total_loss_g_valid:508.1316, recon_loss_valid:21.7350, adversarial_loss_valid:1.7627, feature_loss_valid:484.6339, commit_loss_valid:0.0000, valid_loss_d:1.0418, best_epoch:0>
2023-06-20-20-02: <epoch:2, total_loss_g_valid:302.2671, recon_loss_valid:20.5088, adversarial_loss_valid:2.1077, feature_loss_valid:279.6506, commit_loss_valid:0.0000, valid_loss_d:1.1599, best_epoch:2>
2023-06-20-23-34: <epoch:3, total_loss_g_valid:1090.3598, recon_loss_valid:20.4632, adversarial_loss_valid:2.0897, feature_loss_valid:1067.8068, commit_loss_valid:0.0000, valid_loss_d:0.9414, best_epoch:3>
2023-06-21-03-07: <epoch:4, total_loss_g_valid:1666.9553, recon_loss_valid:21.7679, adversarial_loss_valid:2.0294, feature_loss_valid:1643.1580, commit_loss_valid:0.0000, valid_loss_d:1.0660, best_epoch:3>
2023-06-21-06-39: <epoch:5, total_loss_g_valid:1438.0695, recon_loss_valid:21.1533, adversarial_loss_valid:2.1540, feature_loss_valid:1414.7622, commit_loss_valid:0.0000, valid_loss_d:1.1304, best_epoch:3>
2023-06-21-10-11: <epoch:6, total_loss_g_valid:918.1003, recon_loss_valid:21.4004, adversarial_loss_valid:2.1242, feature_loss_valid:894.5757, commit_loss_valid:0.0000, valid_loss_d:1.1136, best_epoch:3>
2023-06-21-13-43: <epoch:7, total_loss_g_valid:1691.1200, recon_loss_valid:20.3575, adversarial_loss_valid:2.1024, feature_loss_valid:1668.6601, commit_loss_valid:0.0000, valid_loss_d:0.9036, best_epoch:7>

It seems something wrong.

Model training doesn't look very stable ,especially for the SoundStream model, which adds more discriminators in attempt to improve quality, it also makes training more difficult.

In addition,I think some ideas provided by RVQ-GAN can improve your model

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants