forked from datajoint/element-deeplabcut
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconftest.py
169 lines (129 loc) · 4.28 KB
/
conftest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
from pathlib import Path
import datajoint as dj
import pytest
logger = dj.logger
_tear_down = True
# ---------------------- FIXTURES ----------------------
@pytest.fixture(autouse=True, scope="session")
def dj_config():
"""If dj_local_config exists, load"""
if Path("./dj_local_conf.json").exists():
dj.config.load("./dj_local_conf.json")
dj.config.update(
{
"safemode": False,
"database.host": os.environ.get("DJ_HOST") or dj.config["database.host"],
"database.password": os.environ.get("DJ_PASS")
or dj.config["database.password"],
"database.user": os.environ.get("DJ_USER") or dj.config["database.user"],
}
)
os.environ["DATABASE_PREFIX"] = "test_"
return
@pytest.fixture(autouse=True, scope="session")
def pipeline():
from . import tutorial_pipeline as pipeline
yield {
"lab": pipeline.lab,
"subject": pipeline.subject,
"session": pipeline.session,
"model": pipeline.model,
"train": pipeline.train,
"Device": pipeline.Device,
}
if _tear_down:
pipeline.model.schema.drop()
pipeline.train.schema.drop()
pipeline.session.schema.drop()
pipeline.subject.schema.drop()
pipeline.lab.schema.drop()
@pytest.fixture(scope="session")
def insert_upstreams(pipeline):
subject = pipeline["subject"]
session = pipeline["session"]
model = pipeline["model"]
subject.Subject.insert1(
dict(
subject="subject6",
sex="F",
subject_birth_date="2020-01-01",
subject_description="hneih_E105",
),
skip_duplicates=True,
)
session_keys = [
dict(subject="subject6", session_datetime="2021-06-02 14:04:22"),
dict(subject="subject6", session_datetime="2021-06-03 14:43:10"),
]
session.Session.insert(session_keys, skip_duplicates=True)
recording_key = {
"subject": "subject6",
"session_datetime": "2021-06-02 14:04:22",
"recording_id": "1",
}
model.VideoRecording.insert1(
{**recording_key, "device": "Camera1"}, skip_duplicates=True
)
video_files = [
"./example_data/inbox/from_top_tracking-DataJoint-2023-10-11/videos/train1.mp4"
]
model.VideoRecording.File.insert(
[
{**recording_key, "file_id": v_idx, "file_path": Path(f)}
for v_idx, f in enumerate(video_files)
],
skip_duplicates=True,
)
yield
if _tear_down:
subject.Subject.delete()
@pytest.fixture(scope="session")
def recording_info(pipeline, insert_upstreams):
model = pipeline["model"]
model.RecordingInfo.populate()
yield
if _tear_down:
model.RecordingInfo.delete()
@pytest.fixture(scope="session")
def insert_dlc_model(pipeline):
model = pipeline["model"]
if not model.Model & {"model_name": "from_top_tracking_model_test"}:
config_file_rel = "from_top_tracking-DataJoint-2023-10-11/config.yaml"
model.Model.insert_new_model(
model_name="from_top_tracking_model_test",
dlc_config=config_file_rel,
shuffle=1,
trainingsetindex=0,
model_description="Model in example data: from_top_tracking model",
prompt=False,
)
yield
if _tear_down:
model.Model.delete()
@pytest.fixture(scope="session")
def insert_pose_estimation_task(pipeline, recording_info, insert_dlc_model):
model = pipeline["model"]
recording_key = {
"subject": "subject6",
"session_datetime": "2021-06-02 14:04:22",
"recording_id": "1",
}
task_key = {**recording_key, "model_name": "from_top_tracking_model_test"}
model.PoseEstimationTask.insert1(
{
**task_key,
"task_mode": "load",
"pose_estimation_output_dir": "from_top_tracking-DataJoint-2023-10-11/videos/device_1_recording_1_model_from_top_tracking_100000_maxiters",
}
)
yield
if _tear_down:
model.PoseEstimationTask.delete()
@pytest.fixture(scope="session")
def pose_estimation(pipeline, insert_pose_estimation_task):
model = pipeline["model"]
model.PoseEstimation.populate()
yield
if _tear_down:
model.PoseEstimation.delete()