-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtesting.py
176 lines (147 loc) · 6.56 KB
/
testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import time
import util
import preprocess
import torch
import torch.nn as nn
import torch.nn.functional as F
import argparse
import numpy as np
from model.model import NEGAT
from loss.MSELoss import mse_loss
from loss.MAPELoss import MAPELoss
import gc
import sys
from optimizer.RAdam import RAdam
from optimizer.SWA import SWA
torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.enabled = False
parser = argparse.ArgumentParser()
# parser.add_argument('--graph_signal_matrix_filename', type=str, default='data/METR-LA/data2.npz')
parser.add_argument('--data', type=str, default='data/METR-LA/')
parser.add_argument('--adj_filename', type=str, default='data/METR-LA/adj_mx_dijsk.pkl')
parser.add_argument('--num_of_vertices', type=int, default=207)
# parser.add_argument('--data', type=str, default='data/PEMS-BAY/')
# parser.add_argument('--adj_filename', type=str, default='data/PEMS-BAY/adj_mx_bay.pkl')
# parser.add_argument('--num_of_vertices', type=int, default=325)
parser.add_argument('--num_of_features', type=int, default=2)
parser.add_argument('--points_per_hour', type=int, default=12)
parser.add_argument('--num_for_predict', type=int, default=12)
parser.add_argument('--num_of_weeks', type=int, default=1)
parser.add_argument('--num_of_days', type=int, default=1)
parser.add_argument('--num_of_hours', type=int, default=1)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--epoch', type=int, default=1000)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--lr', type=float, default=5e-3)
parser.add_argument('--lr_decay_rate', type=float, default=0.97)
parser.add_argument('--print_every', type=float, default=500)
parser.add_argument('--opt', type=str, default='adam')
parser.add_argument('--graph', type=str, default='default')
parser.add_argument('--early_stop_maxtry', type=int, default=150)
parser.add_argument('--cuda', action='store_true', help='use CUDA training.')
parser.add_argument('--warmup_step', type=int, default=5)
parser.add_argument('--T_max', type=int, default=32)
args = parser.parse_args()
args.cuda = args.cuda and torch.cuda.is_available()
print(f'Training configs: {args}')
def weight_schedule(epoch, max_val=0.1, mult=-5, max_epochs=30):
if epoch == 0:
return 0.
w = max_val * np.exp(mult * (1. - float(epoch) / max_epochs) ** 2)
w = float(w)
if epoch > max_epochs:
return max_val
return w
def get_dataloader(dataloader_type, batch_size):
x_ = np.load('x_' + dataloader_type + '.npy')
y_ = np.load('y_' + dataloader_type + '.npy')
dataloader = preprocess.DataLoader(x_, y_, batch_size)
return dataloader
# @profile(precision=4, stream=open('memory_profiler.log','w+'))
def main():
#set seed
torch.manual_seed(args.seed)
np.random.seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
#load data
dataloader, adj_mx, SE = preprocess.load_dataset(args.data, args.adj_filename, args.batch_size, args.batch_size, args.batch_size)
scaler = dataloader['scaler']
adj_mx = torch.from_numpy(np.array(adj_mx))[0]
adj_mx = adj_mx.type(torch.FloatTensor)
SE = torch.from_numpy(SE)
print('SE shape', SE.shape)
# adj_mx = torch.ones_like(adj_mx)
if args.cuda:
adj_mx = adj_mx.cuda()
SE = SE.cuda()
net = NEGAT(args.cuda, adj_mx, adj_mx.shape[0], args.num_of_features, args.points_per_hour*args.num_of_hours, args.
num_for_predict)
if args.cuda:
net = net.cuda()
generator_params = list(map(id, net.network_generator.parameters()))
base_params = filter(lambda p: id(p) not in generator_params,
net.parameters())
# optimizer = torch.optim.Adam([{'params': base_params}, {'params': net.network_generator.parameters(), 'lr': args.lr * 10}], lr=args.lr, betas=(0.9, 0.999), weight_decay=1e-9)
optimizer = torch.optim.Adam(net.parameters(), lr=args.lr, betas=(0.9, 0.999), weight_decay=1e-9)
# optimizer = RAdam(net.parameters(), lr=args.lr, betas=(0.9, 0.999), weight_decay=1e-9)
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda epoch: args.lr_decay_rate ** epoch)
# lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.T_max, eta_min=0, last_epoch=-1)
# lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.8, patience=2, min_lr=1e-7, eps=1e-09)
print("start training...",flush=True)
his_loss =[]
val_time = []
train_time = []
trycnt = 0
mmin_val_loss = 10000000
mmin_val_loss_1 = 10000000
mmin_val_loss_2 = 10000000
mmin_epoch = 10000000
train_step = 0
net = torch.load('bestModel/best_model_metrla.pkl')
if args.cuda:
net = net.cuda()
with torch.no_grad():
net.eval()
# Testing
outputs = []
realy = []
for iter, (testx, testy) in enumerate(dataloader['test_loader']):
if args.cuda:
testx = testx.cuda()
testy = testy.cuda()
adjs = adj_mx.view(1, adj_mx.shape[0], adj_mx.shape[1])
adjs = adjs.repeat(testx.shape[0], 1, 1)
output = net.forward(testx, adjs, SE)
output = output.permute(0, 3, 1, 2)
output = output.squeeze()
outputs.append(output)
realy.append(testy[:,0,:,:].squeeze())
# print('testloss', testy[:,0,:,:].squeeze().shape, output.shape)
yhat = torch.cat(outputs, dim=0)
outputs = []
realy = torch.cat(realy, dim=0)
if args.cuda:
yhat = yhat.cuda()
realy = realy.cuda()
amae = []
amape = []
armse = []
for i in range(12):
pred = scaler.inverse_transform(yhat[:,:,i])
real = scaler.inverse_transform(realy[:,:,i])
metrics = util.metric(pred,real)
log = 'Evaluate best model on test data for horizon {:d}, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}'
print(log.format(i+1, metrics[0], metrics[1], metrics[2]))
amae.append(metrics[0])
amape.append(metrics[1])
armse.append(metrics[2])
log = 'On average over 12 horizons, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}'
print(log.format(np.mean(amae),np.mean(amape),np.mean(armse)))
print('==================================================================================')
print('\r\n\r\n\r\n')
if __name__ == "__main__":
t1 = time.time()
main()
t2 = time.time()
print("Total time spent: {:.4f}".format(t2-t1))