-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
330 lines (279 loc) · 12.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import time
import util
import preprocess
import torch
import torch.nn as nn
import torch.nn.functional as F
import argparse
import numpy as np
from model.model import NEGAT
from loss.MSELoss import mse_loss
from loss.MAPELoss import MAPELoss
import gc
import sys
from optimizer.RAdam import RAdam
from optimizer.SWA import SWA
torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.enabled = False
parser = argparse.ArgumentParser()
# parser.add_argument('--graph_signal_matrix_filename', type=str, default='data/METR-LA/data2.npz')
# parser.add_argument('--data', type=str, default='data/METR-LA/')
# parser.add_argument('--adj_filename', type=str, default='data/METR-LA/adj_mx_dijsk.pkl')
# parser.add_argument('--num_of_vertices', type=int, default=207) #1900
parser.add_argument('--data', type=str, default='data/PEMS-BAY/')
parser.add_argument('--adj_filename', type=str, default='data/PEMS-BAY/adj_mx_bay.pkl')
parser.add_argument('--num_of_vertices', type=int, default=325)
parser.add_argument('--num_of_features', type=int, default=2)
parser.add_argument('--points_per_hour', type=int, default=12)
parser.add_argument('--num_for_predict', type=int, default=12)
parser.add_argument('--num_of_weeks', type=int, default=1)
parser.add_argument('--num_of_days', type=int, default=1)
parser.add_argument('--num_of_hours', type=int, default=1)
parser.add_argument('--batch_size', type=int, default=36)
parser.add_argument('--epoch', type=int, default=40)
parser.add_argument('--seed', type=int, default=1900)#400,800
parser.add_argument('--lr', type=float, default=5e-4)
parser.add_argument('--lr_decay_rate', type=float, default=0.97)
parser.add_argument('--print_every', type=float, default=500)
parser.add_argument('--opt', type=str, default='adam')
parser.add_argument('--graph', type=str, default='default')
parser.add_argument('--early_stop_maxtry', type=int, default=6)
parser.add_argument('--cuda', action='store_true', help='use CUDA training.')
parser.add_argument('--warmup_step', type=int, default=5)
parser.add_argument('--T_max', type=int, default=32)
args = parser.parse_args()
args.cuda = args.cuda and torch.cuda.is_available()
print(f'Training configs: {args}')
def weight_schedule(epoch, max_val=0.1, mult=-5, max_epochs=30):
if epoch == 0:
return 0.
w = max_val * np.exp(mult * (1. - float(epoch) / max_epochs) ** 2)
w = float(w)
if epoch > max_epochs:
return max_val
return w
def get_dataloader(dataloader_type, batch_size):
x_ = np.load('x_' + dataloader_type + '.npy')
y_ = np.load('y_' + dataloader_type + '.npy')
dataloader = preprocess.DataLoader(x_, y_, batch_size)
return dataloader
# @profile(precision=4, stream=open('memory_profiler.log','w+'))
def main(rand_seed):
return_value = -1
#set seed
# torch.manual_seed(args.seed)
# np.random.seed(args.seed)
# torch.cuda.manual_seed_all(args.seed)
torch.manual_seed(rand_seed)
np.random.seed(rand_seed)
torch.cuda.manual_seed_all(rand_seed)
#load data
dataloader, adj_mx, SE = preprocess.load_dataset(args.data, args.adj_filename, args.batch_size, args.batch_size, args.batch_size)
scaler = dataloader['scaler']
print('scaler', scaler.std, scaler.mean)
adj_mx = torch.from_numpy(np.array(adj_mx))[0]
adj_mx = adj_mx.type(torch.FloatTensor)
SE = torch.from_numpy(SE)
print('SE shape', SE.shape)
# adj_mx = torch.ones_like(adj_mx)
if args.cuda:
adj_mx = adj_mx.cuda()
SE = SE.cuda()
net = NEGAT(args.cuda, adj_mx, adj_mx.shape[0], args.num_of_features, args.points_per_hour*args.num_of_hours, args.
num_for_predict)
if args.cuda:
net = net.cuda()
generator_params = list(map(id, net.network_generator.parameters()))
base_params = filter(lambda p: id(p) not in generator_params,
net.parameters())
# optimizer = torch.optim.Adam([{'params': base_params}, {'params': net.network_generator.parameters(), 'lr': args.lr * 10}], lr=args.lr, betas=(0.9, 0.999), weight_decay=1e-9)
optimizer = torch.optim.Adam(net.parameters(), lr=args.lr, betas=(0.9, 0.999), weight_decay=1e-9)
# optimizer = RAdam(net.parameters(), lr=args.lr, betas=(0.9, 0.999), weight_decay=1e-9)
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda epoch: args.lr_decay_rate ** epoch)
# lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.T_max, eta_min=0, last_epoch=-1)
# lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.8, patience=2, min_lr=1e-7, eps=1e-09)
print("start training...",flush=True)
his_loss =[]
val_time = []
train_time = []
trycnt = 0
mmin_val_loss = 10000000
mmin_val_loss_1 = 10000000
mmin_val_loss_2 = 10000000
mmin_epoch = 10000000
train_step = 0
for i in range(args.epoch):
if args.cuda:
net = net.cuda()
# Training
net.train()
train_loss = []
train_mape = []
train_rmse = []
t1 = time.time()
w = weight_schedule(i)
# w = 1
print('epoch: ', i, ' training...')
if i < args.warmup_step:
curr_lr = args.lr * (i+1) / args.warmup_step
optimizer.param_groups[0]['lr'] = curr_lr
# optimizer.param_groups[1]['lr'] = curr_lr * 10
else:
lr_scheduler.step()
for iter, (trainx, trainy) in enumerate(dataloader['train_loader']):
optimizer.zero_grad()
if args.cuda:
trainx = trainx.cuda()
trainy = trainy.cuda()
adjs = adj_mx.view(1, adj_mx.shape[0], adj_mx.shape[1])
adjs = adjs.repeat(trainx.shape[0], 1, 1)
# print(adjs.shape)
output, norm_loss = net.forward(trainx, adjs, SE)
real_val = trainy[:,0,:,:]
real_val = torch.unsqueeze(real_val,dim=1)
output = output.permute(0, 3, 1, 2)
# output = output[:,:,:args.num_of_vertices,:]
predict = scaler.inverse_transform(output)
real = scaler.inverse_transform(real_val)
# print('trainloss', predict.shape, real.shape)
mae = util.masked_mae(predict, real, 0.0)
mape = util.masked_mape(predict, real, 0.0).item()
rmse = util.masked_rmse(predict, real, 0.0).item()
# loss = mae
loss = mae + w * norm_loss
# loss = util.masked_huber_loss(predict, real, 0.0) + w * norm_loss
# print ('loss', mae, norm_loss)
mae = mae.item()
train_loss.append(mae)
train_mape.append(mape)
train_rmse.append(rmse)
# loss.backward()
# if (iter+1) % 1 == 0:
# torch.nn.utils.clip_grad_norm_(net.parameters(), 3)
# optimizer.step()
# optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(net.parameters(), 3)
optimizer.step()
if iter % args.print_every == 0 :
log = 'Iter: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}'
print(log.format(iter, train_loss[-1], train_mape[-1], train_rmse[-1]), flush=True)
# break
# optimizer.swap_swa_sgd()
# optimizer.bn_update(dataloader['train_loader'], net, adj_mx, device=adjs.device)
t2 = time.time()
train_time.append(t2-t1)
with torch.no_grad():
# Validation
net.eval()
valid_loss = []
valid_mape = []
valid_rmse = []
s1 = time.time()
for iter, (valx, valy) in enumerate(dataloader['val_loader']):
if args.cuda:
valx = valx.cuda()
valy = valy.cuda()
adjs = adj_mx.view(1, adj_mx.shape[0], adj_mx.shape[1])
adjs = adjs.repeat(valx.shape[0], 1, 1)
output = net.eval().forward(valx, adjs, SE)
real_val = valy[:,0,:,:]
real_val = torch.unsqueeze(real_val, dim=1)
output = output.permute(0, 3, 1, 2)
# output = output[:,:,:args.num_of_vertices,:]
predict = scaler.inverse_transform(output)
real = scaler.inverse_transform(real_val)
mae = util.masked_mae(predict, real, 0.0).item()
mape = util.masked_mape(predict, real, 0.0).item()
rmse = util.masked_rmse(predict, real, 0.0).item()
valid_loss.append(mae)
valid_mape.append(mape)
valid_rmse.append(rmse)
# print('valloss', predict.shape, real.shape)
# break
s2 = time.time()
log = 'Epoch: {:03d}, Inference Time: {:.4f} secs'
print(log.format(i,(s2-s1)))
val_time.append(s2-s1)
mtrain_loss = np.mean(train_loss)
mtrain_mape = np.mean(train_mape)
mtrain_rmse = np.mean(train_rmse)
mvalid_loss = np.mean(valid_loss)
mvalid_mape = np.mean(valid_mape)
mvalid_rmse = np.mean(valid_rmse)
his_loss.append(mvalid_loss)
log = 'Epoch: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}, Valid Loss: {:.4f}, Valid MAPE: {:.4f}, Valid RMSE: {:.4f}, Training Time: {:.4f}/epoch'
print(log.format(i, mtrain_loss, mtrain_mape, mtrain_rmse, mvalid_loss, mvalid_mape, mvalid_rmse, (t2 - t1)),flush=True)
if mmin_val_loss > mvalid_loss:
mmin_val_loss = mvalid_loss
mmin_epoch = i
trycnt = 0
torch.save(net, 'best_model.pkl')
# lr_scheduler.step()
# if i >= args.warmup_step:
# lr_scheduler.step(mvalid_loss)
# Testing
outputs = []
realy = []
for iter, (testx, testy) in enumerate(dataloader['test_loader']):
if args.cuda:
testx = testx.cuda()
testy = testy.cuda()
adjs = adj_mx.view(1, adj_mx.shape[0], adj_mx.shape[1])
adjs = adjs.repeat(testx.shape[0], 1, 1)
output = net.forward(testx, adjs, SE)
output = output.permute(0, 3, 1, 2)
output = output.squeeze()
outputs.append(output)
realy.append(testy[:,0,:,:].squeeze())
# print('testloss', testy[:,0,:,:].squeeze().shape, output.shape)
yhat = torch.cat(outputs, dim=0)
outputs = []
realy = torch.cat(realy, dim=0)
if args.cuda:
yhat = yhat.cuda()
realy = realy.cuda()
print("Training finished")
amae = []
amape = []
armse = []
for i in range(12):
pred = scaler.inverse_transform(yhat[:,:,i])
real = scaler.inverse_transform(realy[:,:,i])
metrics = util.metric(pred,real)
log = 'Evaluate best model on test data for horizon {:d}, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}'
print(log.format(i+1, metrics[0], metrics[1], metrics[2]))
amae.append(metrics[0])
amape.append(metrics[1])
armse.append(metrics[2])
if i == 11 and metrics[0] < 3.40:
torch.save(net, 'best_model_185.pkl')
return_value = rand_seed
log = 'On average over 12 horizons, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}'
print(log.format(np.mean(amae),np.mean(amape),np.mean(armse)))
print('early stop trycnt:', trycnt, mmin_epoch)
print('==================================================================================')
print('\r\n\r\n\r\n')
# for early stop
trycnt += 1
if args.early_stop_maxtry < trycnt:
print('early stop!')
return return_value
return return_value
if __name__ == "__main__":
# rets = []
# for i in range(400, 2000, 100):
# print('rand_seed', i)
t1 = time.time()
ret = main(args.seed)
t2 = time.time()
rets.append(ret)
print("Total time spent: {:.4f}".format(t2-t1))
# print('rets:', rets)
# a = torch.randn((3, 3))
# d = torch.sum(a, dim=1)
# print(d)
# d = torch.eye(3) * d - a
# print(a)
# print(d)