-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprune.py
151 lines (129 loc) · 5.26 KB
/
prune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from __future__ import absolute_import, division, print_function, unicode_literals
# TensorFlow and tf.keras
# Good reference: https://www.tensorflow.org/beta/guide/keras/training_and_evaluation
import tensorflow as tf
from tensorflow import keras
from typing import List
# Helper libraries
import numpy as np
import matplotlib.pyplot as plt
import os
# Load data
# reference for loading data: https://www.tensorflow.org/beta/tutorials/load_data/numpy
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
# Set up model
def create_model():
"""Create a model with specified architecture."""
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(1000, activation=tf.nn.relu, use_bias=False),
keras.layers.Dense(1000, activation=tf.nn.relu, use_bias=False),
keras.layers.Dense(500, activation=tf.nn.relu, use_bias=False),
keras.layers.Dense(200, activation=tf.nn.relu, use_bias=False),
keras.layers.Dense(10, activation=tf.nn.softmax),
])
# compile the model
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics= ['accuracy'],
)
return model
# m = create_model()
# m.fit(train_images, train_labels, epochs=10`)
m2 = create_model()
m2.fit(train_images, train_labels, epochs=5)
m2.save_weights('/content/drive/My Drive/Pruning_Model/epoch5.2/run1')
tf.keras.models.save_model(m2, "/content/drive/My Drive/Pruning_Model/epoch5.2/run1")
print("model saved successfully")
# Prune the Model
k_pcent = [0, 25, 50, 60, 70, 80, 90, 95, 97, 99]
def concat_layer_weights(model) -> List[np.ndarray]:
"""Return a list of arrays for each layer."""
result = []
for i in range(1, 5):
# index 0 for the weights, 1 for the biases
result.append(np.copy(model.layers[i].get_weights()[0]))
return result
# Weight Pruning
def prune_weights(model, k: int):
"""Return a model with k% of smallest weights pruned."""
weights = concat_layer_weights(model)
# master holds all of the model's nodes in flattened 1D shape.
master = np.array([])
# store info of layers as: (layer, row, col).
info = []
# the input layer doesn't have weights, i.e. layer = 1 to start.
for i, w in enumerate(weights):
info.append((i+1, np.shape(w)[0], np.shape(w)[1]))
master = np.concatenate([master, w.flatten()])
# ensure no negative values.
master = master.flatten()
master_abs = np.abs(master)
# floors, might be insignificant difference.
num_to_prune = int(k * len(master) / 100)
# get the ranks
all_idx = np.argsort(master_abs)
all_ranks = np.empty_like(all_idx)
all_ranks[all_idx] = np.arange(len(master_abs))
master[np.where(all_ranks <= num_to_prune)] = 0
prev = 0
for i in info:
num = i[1] * i[2]
rank = all_ranks[prev: (num + prev)]
# set weights using np array:
# https://github.com/tensorflow/tensorflow/issues/19108
# https://github.com/tensorflow/tensorflow/issues/29663
model.layers[i[0]].set_weights([master[prev:(num + prev)].reshape((i[1], i[2]))])
prev += num
# Unit Pruning
def prune_units(model, k: int):
"""Return a model with k% of smallest units deleted from the network."""
weights = concat_layer_weights(model)
# calculate L2-norm for each weight, axis = 0 == column
unit_norms = np.concatenate([np.linalg.norm(w, axis=0) for w in weights])
num_units_to_prune = int(k * len(unit_norms) / 100)
# get the ranking for the array
# adapted from: https://stackoverflow.com/questions/5284646/rank-items-in-an-array-using-python-numpy-without-sorting-array-twice
all_idx = np.argsort(unit_norms)
all_ranks = np.empty_like(all_idx)
all_ranks[all_idx] = np.arange(len(unit_norms))
start_idx = 0
for i, w in enumerate(weights):
# the rank of the value at each index of the layer matrix.
rank = all_ranks[start_idx: (start_idx + np.shape(w)[1])]
# null out all the rank values as calculated above.
w[:, np.where(rank <= num_units_to_prune)] = 0
model.layers[i + 1].set_weights([w])
start_idx += np.shape(w)[1]
# Percent sparsity
k_pcent = [0, 25, 50, 60, 70, 80, 90, 95, 97, 99]
# Weight pruned accuracy
weight_accuracies = []
loss = []
for k in k_pcent:
print("the value of k is: {}".format(k))
model = load_model(model_path=model_path)
prune_weights(model, k)
test_loss, test_acc = model.evaluate(test_images, test_labels)
weight_accuracies.append(test_acc)
loss.append(test_loss)
# matplotlib tutorial: https://matplotlib.org/users/pyplot_tutorial.html
plt.plot(k_pcent, weight_accuracies)
plt.xlabel('Percent Weights Pruned')
plt.ylabel('Test Accuracy')
plt.title('Result of Weight Pruning')
# Unit pruned accuracy
unit_accuracies = []
model_loss = []
for k in k_pcent:
print(k)
model = load_model(model_path=model_path)
prune_units(model, k)
test_loss, test_acc = model.evaluate(test_images, test_labels)
unit_accuracies.append(test_acc)
model_loss.append(test_loss)
plt.plot(k_pcent, unit_accuracies)
plt.xlabel('Percent Units Pruned')
plt.ylabel('Test Accuracy')
plt.title('Result of Unit Pruning')