-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_nn.py
142 lines (109 loc) · 4.9 KB
/
train_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""
Train the neural network based load forecasting
We always train an accuracy-driven load forecaster and unlearn from the accuracy-driven load forecaster as well.
We first train the nn on the core dataset, and use the sensitive dataset to fine tune the last layer of the nn.
"""
import torch
from torch.nn.functional import mse_loss
import hydra
from omegaconf import DictConfig
from time import time
from torch.utils.data import DataLoader
from func_operation import return_nn_model, return_core_datasets
import os
from utils import set_random_seed, return_dataset
class Trainer:
def __init__(self, net, optimizer, train_loader, test_loader):
self.net = net
self.optimizer = optimizer
self.trainloader = train_loader
self.testloader = test_loader
class Trainer_MSE(Trainer):
def train(self):
self.net.train()
loss_sum = 0.
for feature, target in self.trainloader:
self.optimizer.zero_grad()
output = self.net(feature)[1] # 1 represents the output of the predictor
loss = mse_loss(output, target)
loss.backward()
self.optimizer.step()
loss_sum += loss.item() * len(target)
return loss_sum / len(self.trainloader.dataset)
def eval(self):
self.net.eval()
loss_sum = 0.
with torch.no_grad():
for feature, target in self.testloader:
output = self.net(feature)[1] # 1 represents the output of the predictor
loss = mse_loss(output, target)
loss_sum += loss.item() * len(target)
return loss_sum / len(self.testloader.dataset)
@hydra.main(version_base=None, config_path="conf", config_name="config")
def main(cfg: DictConfig):
batch_size = cfg.data.batch_size
epochs = cfg.model.epochs
lr = cfg.model.lr
dataset_choice = cfg.model.dataset_choice
set_random_seed(cfg.data.random_seed)
"""
generate the dataset
"""
dataset_train, dataset_test = return_dataset(cfg)
if dataset_choice == "core":
dataset_core, dataset_sensitive = return_core_datasets(cfg, dataset_train)
dataset_train = dataset_core
elif dataset_choice == "all":
pass
else:
raise Exception("dataset not found!")
loader_train = DataLoader(dataset_train, batch_size = batch_size, shuffle = True)
loader_test = DataLoader(dataset_test, batch_size = batch_size, shuffle = False)
# net
net = return_nn_model(cfg, is_load = False)
if dataset_choice == "sensitive" or dataset_choice == "remain":
# currently we did not fine tune using the stochastic method
net = return_nn_model(cfg, is_load = True, dataset = "core") # load the core dataset trained model
# freeze the parameters of the core dataset trained model and only train the last layer
for name, param in net.named_parameters():
if not "lin2" in name:
param.requires_grad = False
print("trainable parameters:")
for name, param in net.named_parameters():
if param.requires_grad:
print(name)
no_param = sum(p.numel() for p in net.parameters() if p.requires_grad)
print('train dataset shape: ', dataset_train.feature.shape, 'test dataset shape: ', dataset_test.feature.shape)
print('is scaled: ', dataset_test.is_scale, dataset_train.is_scale)
print('no. of parameters: ', no_param)
optimizer = torch.optim.Adam(net.parameters(), lr = lr)
trainer = Trainer_MSE(net, optimizer, loader_train, loader_test)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(trainer.optimizer, T_max = int(epochs/10), eta_min = 0.01 * lr)
save_dir = cfg.model.save_dir
if not os.path.exists(save_dir):
os.mkdir(save_dir)
save_dir += f'{cfg.model.dataset_choice}.pth'
best_loss = 1e5
for i in range(1, epochs+1):
start_time = time()
train_loss = trainer.train()
test_loss = trainer.eval()
print("Epoch {}: train loss-{:.4f}, test loss-{:.4f}({:.4f}), time-{:.2f}".format(i, train_loss, test_loss, best_loss, time() - start_time))
lr_scheduler.step()
for param_group in trainer.optimizer.param_groups:
print("LR: {:.6f}".format(param_group['lr']))
if cfg.model.watch == "test":
if test_loss < best_loss:
best_loss = test_loss
torch.save(trainer.net.state_dict(), save_dir)
print("Best model saved!")
elif cfg.model.watch == "train":
if train_loss < best_loss:
best_loss = train_loss
torch.save(trainer.net.state_dict(), save_dir)
print("Best model saved!")
else:
raise Exception("watch not found!")
print("==============================================")
if __name__ == '__main__':
main()