-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfunc_operation.py
431 lines (345 loc) · 18 KB
/
func_operation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
"""
high level functions which calls functions in utils/
"""
from utils.funcs import AnalyticSolverAffine, ModelAffine, AnalyticSolverNNAffine, ModelNNAffine
import torch
import numpy as np
from utils.net import NN_CONV, SPO, MLPMixer
import os
from utils.optimization import Operator
from torch_influence.base import BaseObjective
from torch_influence.modules import AutogradInfluenceModule, CGInfluenceModule
import torch.nn.functional as F
from utils import set_random_seed, NewDataset
def return_affine_model(dataset_train):
"""
train an affine model on the train dataset
"""
analytic_solver = AnalyticSolverAffine(dataset_collect = {'train': dataset_train})
parameter_analytic = analytic_solver.fit_regressor(mode = 'train')
return parameter_analytic
def return_nn_model(config, is_load, dataset = None):
"""
load the trained nn model
dataset: all or core
"""
if config.model.type == 'nn_conv':
no_load = config.data.no_load
in_ch = config.model.in_ch
input_width = config.model.input_width
width = config.model.width
linear_size = config.model.linear_size
net = NN_CONV(in_ch = in_ch, input_length=no_load, input_width = input_width,
width = width, linear_size = linear_size, output_size = no_load)
elif config.model.type == 'nn_mixer':
net = MLPMixer(
image_size = (config.model.image_height, config.model.image_width),
channels = config.model.in_ch,
patch_size = config.model.patch_size,
dim = config.model.linear_size,
depth = config.model.depth,
num_classes = config.model.image_height
)
if is_load:
save_dir = config.model.save_dir + f'/{dataset}.pth'
print(f'Loading model from {save_dir}')
assert os.path.exists(save_dir), 'the nn model file does not exist'
net.load_state_dict(torch.load(save_dir))
return net
def return_nn_affine_model(dataset_train):
analytic_solver = AnalyticSolverNNAffine(dataset_collect = {'train': dataset_train})
parameter_analytic = analytic_solver.fit_regressor(mode = 'train')
return parameter_analytic
def return_trained_model(config, model_type, dataset_train, is_spo, dataset = None):
"""
return the trained load forecast model as **pytorch** module
model_type:
1. affine: generate the model here
2. nn: load the trained model
is_spo: if True, return the SPO model
! carefully check the mean and std
"""
if model_type == 'linear':
# train linear model
parameter_analytic = return_affine_model(dataset_train)
# convert linear model into pytorch module
model = ModelAffine(parameter_analytic)
elif model_type == 'nn_conv' or model_type == 'nn_mixer':
model = return_nn_model(config, is_load=True, dataset = dataset)
elif model_type == 'nn_conv-affine' or model_type == 'nn_mixer-affine':
parameter_analytic = return_nn_affine_model(dataset_train)
model = ModelNNAffine(parameter_analytic)
else:
raise ValueError('model_type should be affine or nn')
if is_spo:
operator = Operator(case_config = config.case)
if dataset_train.is_scale:
mean = dataset_train.target_mean
std = dataset_train.target_std
else:
mean = 0
std = 1
model = SPO(trained_model = model, operator = operator, mean = mean, std = std)
model.eval()
return model
def return_objective(loss_type_dict, is_scale, with_weight = False, **kwargs):
"""
return the objective that defines the train loss and test loss to define the module
train_loss: mse or mape
test_loss: mse or mape or cost
training loss by default taken to be train_loss_on_outputs + train_regularization
output of spo model: (forecast_load, pg, ls, gs)
1. for scaled load, forecast_load is scaled, pg, ls, gs are not scaled
2. for unscaled load, all not scaled
settings on the scaling:
when train or test is mape, the scaled load needs to be unscaled
with_weight: if true, the last element of batch is the weight of each sample in the batch,
this is used for reweighting the unlearn dataset
"""
"""
Affine objective
"""
class MSE_MSE(BaseObjective):
"""
train loss: mse, test loss: mse
we need to distinguish the scaled and unscaled data
"""
def train_outputs(self, model, batch):
# batch is a tuple of (feature, target)
return model(batch[0])
def train_loss_on_outputs(self, outputs, batch):
if with_weight:
loss = torch.mean(F.mse_loss(outputs, batch[1], reduction = 'none'), axis = 1)
# print(loss.shape, batch[2].shape)
return torch.mean(loss * batch[2])
else:
return F.mse_loss(outputs, batch[1]) # mean reduction required
def train_regularization(self, params):
# no regularization
return 0. * torch.square(params.norm())
def test_loss(self, model, params, batch):
outputs = model(batch[0])
if with_weight:
loss = torch.mean(F.mse_loss(outputs, batch[1], reduction = 'none'), axis = 1)
# print(loss.shape, batch[2].shape)
return torch.mean(loss * batch[2])
else:
return F.mse_loss(outputs, batch[1])
# return F.mse_loss(model(batch[0]), batch[1])
class MSE_MAPE(BaseObjective):
"""
if the model is trained on scaled data, then the test data should be unscaled
"""
def __init__(self, mean = 0, std = 1):
self.mean = torch.tensor(mean).float() if type(mean) != torch.Tensor else mean
self.std = torch.tensor(std).float() if type(std) != torch.Tensor else std
def train_outputs(self, model, batch):
# batch is a tuple of (feature, target)
return model(batch[0])
def train_loss_on_outputs(self, outputs, batch):
return F.mse_loss(outputs, batch[1])
def train_regularization(self, params):
# no regularization
return 0. * torch.square(params.norm())
def test_loss(self, model, params, batch):
# unscale
forecast_load = model(batch[0]) * self.std + self.mean
target_load = batch[1] * self.std + self.mean
return torch.mean(torch.abs(forecast_load - target_load) / target_load)
class MSE_COST(BaseObjective):
"""
the spo model already unscales the load forecast if applicable
"""
def __init__(self, operator):
# operator is used to solve the power system operation problem
self.second_coeff = torch.tensor(operator.second_coeff).float()
self.first_coeff = torch.tensor(operator.first_coeff).float()
self.load_shed_coeff_second = torch.tensor(operator.load_shed_coeff_second).float()
self.load_shed_coeff = torch.tensor(operator.load_shed_coeff).float()
self.gen_storage_coeff_second = torch.tensor(operator.gen_storage_coeff_second).float()
self.gen_storage_coeff = torch.tensor(operator.gen_storage_coeff).float()
def train_outputs(self, model, batch):
# ! output the forecast load as it is used during training
output = model(batch[0], batch[1])
forecast_load = output[:, :14]
return forecast_load
def train_loss_on_outputs(self, outputs, batch):
# outputs is the forecast load
return F.mse_loss(outputs, batch[1]) # mean reduction required
def train_regularization(self, params):
# no regularization
return 0. * torch.square(params.norm())
def test_loss(self, model, params, batch):
# consider the cost
# ! the size is (batch_size, 14 + 5 + 14 + 5)
# todo: the size of the output is not flexible for other power system cases
outputs = model(batch[0], batch[1])
# forecast_load = outputs[:, :14]
pg = outputs[:, 14:19]
ls = outputs[:, 19:33]
gs = outputs[:, 33:]
# second_pg + first_pg + second_ls + first_ls + second_gs + first_gs
loss_gen = torch.square(pg) @ self.second_coeff + pg @ self.first_coeff
loss_ls = torch.square(ls).sum(axis = 1) * self.load_shed_coeff_second + ls.sum(axis=1) * self.load_shed_coeff
loss_gs = torch.square(gs).sum(axis = 1) * self.gen_storage_coeff_second + gs.sum(axis=1) * self.gen_storage_coeff
loss = loss_gen + loss_ls + loss_gs
return torch.mean(loss)
# only mse_mape requires mean and std
if loss_type_dict['train'] == 'mse':
if loss_type_dict['test'] == 'mse':
return MSE_MSE()
elif loss_type_dict['test'] == 'mape':
if is_scale:
# unscale
mean = kwargs['target_mean']
std = kwargs['target_std']
return MSE_MAPE(mean = mean, std = std)
else:
return MSE_MAPE()
elif loss_type_dict['test'] == 'cost':
return MSE_COST(kwargs['operator'])
else:
raise ValueError("when train loss is 'mse', test loss should be either 'mse' or 'mape' or 'cost'")
else:
raise ValueError("currently only support mse loss for training!")
def return_module(configs, loss_type_dict, loader_dict, model, method,
device = 'cpu', with_weight = False, watch_progress = False):
"""
return the module defined by the torch-influence package
loss_type_dict: with keys 'train': 'mse' or 'mape' and 'test': 'mse', 'mape', or 'cost' to define the loss
{
'train': 'mse' or 'mape', # by default, the train loss is mse and we never consider cost for training
'test': 'mse' or 'mape' or 'cost' # we can evaluate the performance on the test dataset by its mse, mape, or generator cost
}
loader_dict: with keys 'train' and 'test' to define the dataset
the hessian is calculated on the train dataset
the grad can be both calculated on the train dataset and test dataset. we can use this to control unlearning from the remain or unlearn dataset
model: neural network model (always to be a pytorch layer of linear model)
model_type: 'nn', 'linear'
method: direct or cg
"""
cfg_model = configs['model']
cfg_case = configs['case']
damp = cfg_model['damp'] # the regularization term for positive definiteness
gnh = cfg_model['gnh'] # whether to use generalized newton's method
is_scale = cfg_model['is_scale'] # whether the model is trained on scaled data
# define the objective for using the influence function module
kwargs = {}
if loss_type_dict['test'] == 'cost':
kwargs['operator'] = Operator(case_config = cfg_case)
elif is_scale and loss_type_dict['train'] == 'mse' and loss_type_dict['test'] == 'mape':
# this is the only case we need to unscale the ouptut of the model
kwargs['target_mean'] = loader_dict['train'].dataset.target_mean
kwargs['target_std'] = loader_dict['train'].dataset.target_std
myobjective = return_objective(loss_type_dict = loss_type_dict,
is_scale = is_scale, with_weight=with_weight,
**kwargs)
if method == 'direct':
module = AutogradInfluenceModule(
model=model,
objective=myobjective,
train_loader=loader_dict['train'], # for exact unlearning, we need to calculate the hessian on the remain dataset
test_loader=loader_dict['test'], # this can be replaced by unlearn_loader which is also exact
device=device,
damp=damp,
check_eigvals = True
)
elif method == 'cg':
module = CGInfluenceModule(
model=model,
objective=myobjective,
train_loader=loader_dict['train'], # for exact unlearning, we need to calculate the hessian on the remain dataset
test_loader=loader_dict['test'], # this can be replaced by unlearn_loader which is also exact
device=device,
damp=damp,
gnh = gnh,
# settings for conjugate gradient
watch_progress=watch_progress,
tol = 1e-5,
maxiter = 1000,
)
else:
raise ValueError("method should be either 'direct' or 'cg'")
return module
def return_unlearn_datasets(influences, unlearn_prop, dataset_to_be_unlearn, mode, config):
"""
return the unlearning dataset as the subset of the dataset_to_be_unlearn,
you can choose the mode of how to choose the unlearning dataset
mode: 'helpful' or 'harmful' or 'random'
influence: None or an array of influeces on the train dataset when each of the sample is unlearnt
must not be None if mode is helpful or harmful
find the samples in the train dataset which are helpful or harmful to the test dataset's mape loss
"""
if mode == 'helpful' or mode == 'harmful':
assert len(influences) == len(dataset_to_be_unlearn), "the length of influences should be the same as the dataset"
set_random_seed(config.data.random_seed)
# ! assume the maximum unlearning ratio is 0.3
unlearn_no = int(unlearn_prop * len(dataset_to_be_unlearn))
candidate_no = int(0.31 * len(dataset_to_be_unlearn))
if mode == 'random':
# randomly unlearn from the train dataset
unlearn_index = np.random.choice(len(dataset_to_be_unlearn), unlearn_no, replace = False)
elif mode == 'helpful':
# find the samples that is most helpful to the test dataset performance
unlearn_index = torch.argsort(influences, descending = True)[:candidate_no].numpy()
print('ave. performance change of unlearning (positive for helpful): {}'.format(np.sum(influences.numpy()[unlearn_index])))
elif mode == 'harmful':
# find the samples that is most harmful to the test dataset performance
unlearn_index = torch.argsort(influences, descending = False)[:candidate_no].numpy()
else:
print('mode should be random or helpful or harmful')
# randomly choose from the over_scale dataset
unlearn_index = np.random.choice(unlearn_index, unlearn_no, replace = False)
remain_index = [i for i in range(len(dataset_to_be_unlearn)) if i not in unlearn_index]
assert len(set(remain_index).intersection(set(unlearn_index))) == 0, "the two sets should be disjoint"
dataset_unlearn = NewDataset(dataset_to_be_unlearn.feature[unlearn_index], dataset_to_be_unlearn.target[unlearn_index],
mean = dataset_to_be_unlearn.target_mean, std = dataset_to_be_unlearn.target_std)
dataset_remain = NewDataset(dataset_to_be_unlearn.feature[remain_index], dataset_to_be_unlearn.target[remain_index],
mean = dataset_to_be_unlearn.target_mean, std = dataset_to_be_unlearn.target_std)
dataset_unlearn.is_scale = dataset_to_be_unlearn.is_scale
dataset_remain.is_scale = dataset_to_be_unlearn.is_scale
return dataset_unlearn, dataset_remain, unlearn_index, remain_index
def return_core_datasets(config, dataset_to_be_split):
"""
return the core dataset and the sensitive dataset: only for nn model
"""
core_prop = config.model['core_prop']
is_random = config.model['is_random_core']
set_random_seed(config.data.random_seed)
core_no = int(core_prop * len(dataset_to_be_split))
if is_random:
core_index = np.random.choice(len(dataset_to_be_split), core_no, replace = False)
else:
core_index = range(len(dataset_to_be_split))[:core_no]
sensitive_index = [i for i in range(len(dataset_to_be_split)) if i not in core_index]
assert len(set(sensitive_index).intersection(set(core_index))) == 0, "the two sets should be disjoint"
mean = dataset_to_be_split.target_mean
std = dataset_to_be_split.target_std
dataset_core = NewDataset(dataset_to_be_split.feature[core_index], dataset_to_be_split.target[core_index],
mean = mean, std = std)
dataset_sensitive = NewDataset(dataset_to_be_split.feature[sensitive_index], dataset_to_be_split.target[sensitive_index],
mean = mean, std = std)
dataset_core.is_scale = dataset_to_be_split.is_scale
dataset_sensitive.is_scale = dataset_to_be_split.is_scale
return dataset_core, dataset_sensitive
def return_dataset_for_nn_affine(config, dataset_sensitive, dataset_test):
"""
return the dataset used to train the linear model upon the nn model trained by the core dataset
the linear model takes the output of the nn model (trained on the core dataset) as input
"""
# nn trained on the core dataset
nn_model_core = return_nn_model(config, is_load=True, dataset="core")
nn_model_core.eval()
with torch.no_grad():
# find the output of the nn model on the core dataset
feature_sensitive = nn_model_core(dataset_sensitive.feature)[0] # 0 represents the output of the feature extractor
feature_test = nn_model_core(dataset_test.feature)[0]
target_sensitive = dataset_sensitive.target
target_test = dataset_test.target
mean = dataset_sensitive.target_mean
std = dataset_sensitive.target_std
dataset_train = NewDataset(feature_sensitive, target_sensitive, mean, std)
dataset_test = NewDataset(feature_test, target_test, mean, std)
dataset_train.is_scale = dataset_sensitive.is_scale
dataset_test.is_scale = dataset_sensitive.is_scale
return dataset_train, dataset_test