This repository has been archived by the owner on Mar 13, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathdata_process.py
126 lines (91 loc) · 4.49 KB
/
data_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import numpy as np
from occupancy_map import get_distance_map, get_grid_map
class DataProcesser:
def __init__(self, data_dir, observed_frame_num, predicting_frame_num, dup_threshold):
self.data_dir = data_dir
self.file_path = os.path.join(self.data_dir, 'pixel_pos.csv')
self.dup_threshold = dup_threshold
self.raw_data = None
self.ped_num = None
self.traj_data = []
self.obs = []
self.pred = []
self.obs_length = observed_frame_num
self.pred_length = predicting_frame_num
self.from_csv()
self.get_traj()
self.get_obs_pred()
def from_csv(self):
print('Creating Raw Data from CSV file...')
self.raw_data = np.genfromtxt(self.file_path, delimiter=',')
self.ped_num = np.size(np.unique(self.raw_data[1, :]))
def get_traj(self):
"""
reshape data format from [frame_ID, ped_ID, y-coord, x-coord]
to pedestrian_num * [ped_ID, frame_ID, x-coord, y-coord]
"""
for pedIndex in range(self.ped_num):
traj = []
for i in range(len(self.raw_data[1])):
if self.raw_data[1][i] == pedIndex + 1:
traj.append([self.raw_data[1][i], self.raw_data[0][i], self.raw_data[-1][i], self.raw_data[-2][i]])
traj = np.reshape(traj, [-1, 4])
if self.traj_filter(traj, dup_threshold=self.dup_threshold):
self.traj_data.append(traj)
return self.traj_data
def get_obs_pred(self):
"""
get input observed data and output predicted data
"""
count = 0
for pedIndex in range(len(self.traj_data)):
if len(self.traj_data[pedIndex]) >= self.obs_length + self.pred_length:
obs_pedIndex = []
pred_pedIndex = []
count += 1
for i in range(self.obs_length):
obs_pedIndex.append(self.traj_data[pedIndex][i])
for j in range(self.pred_length):
pred_pedIndex.append(self.traj_data[pedIndex][j + self.obs_length])
obs_pedIndex = np.reshape(obs_pedIndex, [self.obs_length, 4])
pred_pedIndex = np.reshape(pred_pedIndex, [self.pred_length, 4])
self.obs.append(obs_pedIndex)
self.pred.append(pred_pedIndex)
self.obs = np.reshape(self.obs, [count, self.obs_length, 4])
self.pred = np.reshape(self.pred, [count, self.pred_length, 4])
return self.obs, self.pred
def get_traj_input(self):
traj_input = []
for pedIndex in range(len(self.obs)):
person_pedIndex = []
for i in range(self.obs_length):
person_pedIndex.append([self.obs[pedIndex][i][-2], self.obs[pedIndex][i][-1]])
person_pedIndex = np.reshape(person_pedIndex, [self.obs_length, 2])
traj_input.append(person_pedIndex)
traj_input = np.reshape(traj_input, [len(self.obs), self.obs_length, 2])
return traj_input
def get_expected_output(self):
expected_ouput = []
for pedIndex in range(len(self.pred)):
person_pedIndex = []
for i in range(self.pred_length):
person_pedIndex.append([self.pred[pedIndex][i][-2], self.pred[pedIndex][i][-1]])
person_pedIndex = np.reshape(person_pedIndex, [self.pred_length, 2])
expected_ouput.append(person_pedIndex)
expected_ouput = np.reshape(expected_ouput, [len(self.pred), self.pred_length, 2])
return expected_ouput
def grid_map(self, neighborhood_size, dimensions, grid_size):
grid_map_input = []
for pedIndex in range(len(self.obs)):
group_pedIndex = []
for i in range(self.obs_length):
o_map_pedIndex = get_distance_map(self.obs[pedIndex][i][1], self.obs[pedIndex][i][0], dimensions,
neighborhood_size, grid_size, self.raw_data)
# o_map_pedIndex = np.reshape(o_map_pedIndex, [int(neighborhood_size / grid_size) ** 2, -1])
group_pedIndex.append(o_map_pedIndex)
group_pedIndex = np.reshape(group_pedIndex, [self.obs_length, int(neighborhood_size / grid_size) ** 2])
grid_map_input.append(group_pedIndex)
grid_map_input = np.reshape(grid_map_input,
[-1, self.obs_length, int(neighborhood_size / grid_size) ** 2])
return grid_map_input