-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_mfgr.py
574 lines (536 loc) · 38.5 KB
/
train_mfgr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
#!/usr/bin/env python
# coding=utf-8
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
import torchvision
import copy
import argparse
try:
import cPickle as pickle
except:
import pickle
from utils.compute_accuracy import test_ac
from utils.general import *
from trainers.df_generator_trainer import train_df_generator
from models import *
from tqdm import tqdm
from tensorboardX import SummaryWriter
from datasets.get_dataset import get_select_dataset, get_cur_dataloader
### args settings for classification ###
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='cifar100', type=str, choices=['cifar100','tinyimagenet','cub_imagenet','cub_200_2011'])
parser.add_argument('--dataset_dir', default='./data/cifar-100-python', type=str)
parser.add_argument('--model', type=str, default='resnet34', choices=['resnet34','resnet18_torchvision_model','resnet18_modify'])
parser.add_argument('--num_classes', default=100, type=int)
parser.add_argument('--nb_cl_fg', default=20, type=int, help='the number of classes in first group')
parser.add_argument('--nb_cl', default=20, type=int, help='Classes per group')
parser.add_argument('--nb_runs', default=1, type=int, help='Number of runs (random ordering of classes at each run)')
parser.add_argument('--T', default=2, type=float, help='Temperature for distialltion')
parser.add_argument('--random_seed', default=1988, type=int, help='random seed')
parser.add_argument('--cuda', default=True, help='enables cuda')
parser.add_argument('--val_epoch', default=1, type=int, help='Epochs')
parser.add_argument('--train_batch_size', default=128, type=int, help='Batch size for train')
parser.add_argument('--test_batch_size', default=100, type=int, help='Batch size for test')
parser.add_argument('--eval_batch_size', default=100, type=int, help='Batch size for eval')
parser.add_argument('--custom_weight_decay', default=5e-4, type=float, help='Weight decay')
parser.add_argument('--custom_momentum', default=0.9, type=float, help='Momentum')
parser.add_argument('--save_epoch', default=50, type=int, help='save the model in every save_epoch')
parser.add_argument('--lr_strat', default=[5, 10], nargs="+", type=int, help='Epochs where learning rate gets decreased')
parser.add_argument('--lr_factor', default=0.1, type=float, help='Learning rate decrease factor')
parser.add_argument('--epochs', default=1, type=int, help='Epochs')
parser.add_argument('--base_lr', default=0.1, type=float, help='Initial learning rate')
parser.add_argument('--tensorboard', default=False, action="store_true")
parser.add_argument('--plot_cm', default=False, action="store_true")
parser.add_argument('--load_T', default=False, action="store_true")
parser.add_argument('--load_T_only_imagenet_pretrain', default=False, action="store_true")
parser.add_argument('--load_resume_T', default=False, action="store_true")
parser.add_argument('--load_T_name', default='ResNet34_Model_run_0_step_0_84.2.pth', type=str)
parser.add_argument('--load_resume_T_name', default='ResNet34_Model_run_1_step_0_84.2.pth', type=str)
parser.add_argument('--c_resume_iteration', type=int, default=0)
parser.add_argument('--scheduler', type=str, default='cosWR', choices=['1cyc', 'cosWR', 'None', 'MultiStep'])
parser.add_argument('--method', type=str, default='dfkd', choices=['finetune','dfkd','lwf', 'oracle'])
parser.add_argument('--c_loss_type', type=str, default='ce', choices=['ndkd', 'gdkd','gnkd_ncecut','gnce','ce'])
parser.add_argument('--dataloader_type', type=str, default='il', choices=['il', 'oracle'])
parser.add_argument('--loss_ratio_adaptive', default=False, action="store_true")
parser.add_argument('--o_ce', default=0, type=float, help='loss ratio for old data CE loss')
parser.add_argument('--o_kd', default=0, type=float, help='loss ratio for old data kd loss')
parser.add_argument('--n_ce', default=0, type=float, help='loss ratio for new data CE loss')
parser.add_argument('--n_kd', default=0, type=float, help='loss ratio for new data kd loss')
parser.add_argument('--toy_example', default=False, action="store_true")
### args setting for DFKD generator ###
parser.add_argument('--generator_type', type=str, default='ce', choices=['generator32', 'generator128','generator256','unet'])
parser.add_argument('--load_G', default=False, action="store_true")
parser.add_argument('--load_G_name', default='epoch500_task1_generator_gkl0.1', type=str)
parser.add_argument('--epochs_G', type=int, default=1000, metavar='N', help='number of epochs to train')
parser.add_argument('--batch_size_G', type=int, default=512)
parser.add_argument('--g_resume_iteration', type=int, default=0)
parser.add_argument('--tn_batch_size_G', type=int, default=128, help='train new task batch size G')
parser.add_argument('--gtnbs_adaptive', default=False, action="store_true")
parser.add_argument('--latent_dim_G', type=int, default=1000, help='dimensionality of the latent space')
parser.add_argument('--img_size_G', type=int, default=32, help='size of each image dimension')
parser.add_argument('--channels_G', type=int, default=3, help='number of image channels')
parser.add_argument('--lr_G', type=float, default=0.01, metavar='LR', help='generator learning rate')
parser.add_argument('--ga_ratio', type=float, default=0.1)
parser.add_argument('--goh_ratio', type=float, default=1)
parser.add_argument('--gie_ratio', type=float, default=5)
### for different generator loss
parser.add_argument('--g_loss_type', type=str, default='bn', choices=['base', 'bn', 'bn_kl_image','gnkd_ncecut','gnce','ce'])
parser.add_argument('--kl_img_sample_num', type=int, default=200, help='the numner of kl image sample image for kl loss')
parser.add_argument('--gtv_ratio', type=float, default=0)
parser.add_argument('--gbn_ratio', type=float, default=0, help='deepinversion batchnorm loss ratio')
parser.add_argument('--gkl_ratio', type=float, default=0)
parser.add_argument('--toy_G', default=False, action="store_true")
args = parser.parse_args()
assert(args.nb_cl_fg % args.nb_cl == 0)
assert(args.nb_cl_fg >= args.nb_cl)
### get whole dataset ###
trainset, testset, evalset, X_train_total, Y_train_total, X_valid_total, Y_valid_total = get_select_dataset(args)
### Launch the different runs ###
for n_run in range(args.nb_runs):
### set random seed, log, IL order and IL steps
set_random_seed(args,n_run)
args.iteration_num = set_iteration_number(args)
set_and_write_log(args)
print("Generating orders")
order = np.arange(args.num_classes)
order_list = list(order)
print(__file__); print('Settings:'); print(order_list); print(vars(args))
### start incremental step train
for iteration in range(0, int(args.iteration_num)):
if iteration == 0:
### get current il step dataloader
trainloader, testloader = get_cur_dataloader(iteration, order, args, trainset, testset, X_train_total, Y_train_total, X_valid_total, Y_valid_total)
### set model
if args.model == 'resnet34':
tg_model = ResNet34(num_classes=args.nb_cl_fg).cuda()
elif args.model == 'resnet18_torchvision_model':
tg_model = torchvision.models.resnet18(pretrained=True).cuda()
in_features = tg_model.fc.in_features
tg_model.fc = torch.nn.Linear(in_features, args.nb_cl_fg).cuda()
elif args.model == 'resnet18_modify':
tg_model = resnet18(pretrained=True).cuda()
in_features = tg_model.linear.in_features
tg_model.linear = torch.nn.Linear(in_features, args.nb_cl_fg).cuda()
if args.load_T:
if args.load_T_only_imagenet_pretrain:
pass
else:
pretrain_dir = os.path.join(args.teacher_model_path, args.load_T_name)
tg_model.load_state_dict(torch.load(pretrain_dir))
test_ac(tg_model, X_valid_total, Y_valid_total,evalset, testloader, order, iteration, args)
else:
print("Train the model for iteration {}".format(iteration))
tg_optimizer = optim.SGD(tg_model.parameters(), lr=args.base_lr, momentum=args.custom_momentum, weight_decay=args.custom_weight_decay)
if args.scheduler == 'cosWR':
tg_lr_scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(tg_optimizer, args.epochs // 1, 1)
elif args.scheduler == '1cyc':
tg_lr_scheduler = optim.lr_scheduler.OneCycleLR(tg_optimizer, max_lr=args.base_lr, steps_per_epoch=len(trainloader), epochs=args.epochs)
elif args.scheduler == 'MultiStep':
tg_lr_scheduler = lr_scheduler.MultiStepLR(tg_optimizer, milestones=args.lr_strat, gamma=args.lr_factor)
cls_criterion = nn.CrossEntropyLoss().cuda()
for epoch in tqdm(range(args.epochs)):
tg_model.train()
print('LR:', tg_lr_scheduler.get_last_lr()[0])
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs = inputs.cuda()
targets = targets.cuda()
tg_optimizer.zero_grad()
outputs = tg_model(inputs)
loss_cls = cls_criterion(outputs[:, 0:args.nb_cl_fg], targets)
loss = loss_cls
loss.backward()
tg_optimizer.step()
if args.scheduler == 'cosWR':
tg_lr_scheduler.step(epoch + batch_idx / len(trainloader))
elif args.scheduler == '1cyc':
tg_lr_scheduler.step()
if args.scheduler == 'MultiStep':
tg_lr_scheduler.step()
print('Epoch: %d, loss_cls: %.4f' % (epoch, loss_cls.item()))
if (epoch + 1) % args.val_epoch == 0:
test_ac(tg_model, X_valid_total, Y_valid_total, evalset, testloader, order, iteration, args)
if (epoch + 1) % args.save_epoch == 0:
ckp_name = os.path.join(args.tasks_model_path + '{}_run_{}_step_{}.pth').format(args.model, n_run, iteration)
torch.save(tg_model.state_dict(), ckp_name)
else:
print("Train the model for iteration {}".format(iteration))
### get current dataloader: il or oracle
trainloader, testloader = get_cur_dataloader(iteration, order, args, trainset, testset, X_train_total, Y_train_total, X_valid_total, Y_valid_total)
### train new model ###
### set reference model
ref_model = copy.deepcopy(tg_model).cuda()
for param in ref_model.parameters():
param.requires_grad = False
### set new classifier model
tg_model, num_old_classes = set_new_classifier(ref_model, tg_model, iteration, args)
### load resume or train new model ###
if args.load_resume_T and iteration == args.c_resume_iteration:
pretrain_dir = os.path.join(args.teacher_model_path, args.load_resume_T_name)
tg_model.load_state_dict(torch.load(pretrain_dir))
test_ac(tg_model, X_valid_total, Y_valid_total, evalset, testloader, order, iteration, args)
elif iteration > args.c_resume_iteration:
if args.method == 'finetune':
### set tensorboard path
tb_path = args.tensorboard_base_path + 'task{}/'.format(iteration)
os.makedirs(tb_path, exist_ok=True)
writer = SummaryWriter(tb_path)
### get optimizer, scheduler
tg_optimizer = optim.SGD(tg_model.parameters(), lr=args.base_lr, momentum=args.custom_momentum,weight_decay=args.custom_weight_decay)
if args.scheduler == 'cosWR':
tg_lr_scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(tg_optimizer, args.epochs // 1, 1)
elif args.scheduler == '1cyc':
tg_lr_scheduler = optim.lr_scheduler.OneCycleLR(tg_optimizer, max_lr=args.base_lr,steps_per_epoch=len(trainloader),epochs=args.epochs)
elif args.scheduler == 'MultiStep':
tg_lr_scheduler = lr_scheduler.MultiStepLR(tg_optimizer, milestones=args.lr_strat,gamma=args.lr_factor)
cls_criterion = nn.CrossEntropyLoss().cuda()
### start train for epochs
for epoch in tqdm(range(args.epochs)):
if args.tensorboard:
writer.add_scalar('lr', tg_lr_scheduler.get_last_lr()[0], epoch)
tg_model.train()
print('LR:', tg_lr_scheduler.get_last_lr()[0])
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs = inputs.cuda()
targets = targets.cuda()
tg_optimizer.zero_grad()
outputs = tg_model(inputs)
loss = cls_criterion(outputs, targets)
loss.backward()
tg_optimizer.step()
if args.scheduler == 'cosWR':
tg_lr_scheduler.step(epoch + batch_idx / len(trainloader))
elif args.scheduler == '1cyc':
tg_lr_scheduler.step()
if args.scheduler == 'MultiStep':
tg_lr_scheduler.step()
print('Epoch: %d, loss: %.4f' % (epoch, loss.item()))
if (epoch + 1) % args.val_epoch == 0:
test_ac(tg_model, X_valid_total, Y_valid_total,evalset, testloader, order, iteration, args)
if (epoch + 1) % args.save_epoch == 0:
ckp_name = os.path.join(args.tasks_model_path + 'ResNet34_Model_run_{}_step_{}.pth').format(n_run, iteration)
torch.save(tg_model.state_dict(), ckp_name)
elif args.method == 'lwf':
### set tensorboard path
tb_path = args.tensorboard_base_path + 'task{}/'.format(iteration)
os.makedirs(tb_path, exist_ok=True)
writer = SummaryWriter(tb_path)
### get optimizer, scheduler
tg_optimizer = optim.SGD(tg_model.parameters(), lr=args.base_lr, momentum=args.custom_momentum,weight_decay=args.custom_weight_decay)
if args.scheduler == 'cosWR':
tg_lr_scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(tg_optimizer, args.epochs // 1, 1)
elif args.scheduler == '1cyc':
tg_lr_scheduler = optim.lr_scheduler.OneCycleLR(tg_optimizer, max_lr=args.base_lr,steps_per_epoch=len(trainloader),epochs=args.epochs)
elif args.scheduler == 'MultiStep':
tg_lr_scheduler = lr_scheduler.MultiStepLR(tg_optimizer, milestones=args.lr_strat,gamma=args.lr_factor)
cls_criterion = nn.CrossEntropyLoss().cuda()
### start train for epochs
for epoch in tqdm(range(args.epochs)):
if args.tensorboard:
writer.add_scalar('lr', tg_lr_scheduler.get_last_lr()[0], epoch)
tg_model.train()
print('LR:', tg_lr_scheduler.get_last_lr()[0])
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs = inputs.cuda()
targets = targets.cuda()
tg_optimizer.zero_grad()
old_outputs = ref_model(inputs)
outputs = tg_model(inputs)
targets = set_targets_cut(args, targets, iteration)
loss_cls_new = cls_criterion(outputs[:, num_old_classes:(num_old_classes + args.nb_cl)],targets)
# distillation loss for main classifier
soft_target = F.softmax(old_outputs[:, :num_old_classes] / args.T, dim=1)
logp = F.log_softmax(outputs[:, :num_old_classes] / args.T, dim=1)
loss_distill_new = -torch.mean(torch.sum(soft_target * logp, dim=1))
if args.loss_ratio_adaptive:
if args.nb_cl_fg == args.nb_cl:
alpha = float(iteration) / float(iteration + 1)
else:
alpha = float(args.nb_cl_fg / args.nb_cl + iteration - 1) / float(args.nb_cl_fg / args.nb_cl + iteration)
loss = (1.0 - alpha) * loss_cls_new + alpha * loss_distill_new
else:
loss = args.n_ce * loss_cls_new + args.n_kd * loss_distill_new
loss.backward()
tg_optimizer.step()
if args.scheduler == 'cosWR':
tg_lr_scheduler.step(epoch + batch_idx / len(trainloader))
elif args.scheduler == '1cyc':
tg_lr_scheduler.step()
if args.scheduler == 'MultiStep':
tg_lr_scheduler.step()
print('Epoch: %d, loss: %.4f loss cls new: %.4f loss distill new: %.4f' % (epoch, loss.item(), loss_cls_new.item(), loss_distill_new.item()))
if (epoch + 1) % args.val_epoch == 0:
test_ac(tg_model, X_valid_total, Y_valid_total,evalset, testloader, order, iteration, args)
if (epoch + 1) % args.save_epoch == 0:
ckp_name = os.path.join(args.tasks_model_path + '{}_run_{}_step_{}.pth').format(args.model, n_run, iteration)
torch.save(tg_model.state_dict(), ckp_name)
elif args.method == 'oracle':
### set tensorboard path
tb_path = args.tensorboard_base_path + 'task{}/'.format(iteration)
os.makedirs(tb_path, exist_ok=True)
writer = SummaryWriter(tb_path)
### get optimizer, scheduler
tg_optimizer = optim.SGD(tg_model.parameters(), lr=args.base_lr, momentum=args.custom_momentum,weight_decay=args.custom_weight_decay)
if args.scheduler == 'cosWR':
tg_lr_scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(tg_optimizer, args.epochs // 1, 1)
elif args.scheduler == '1cyc':
tg_lr_scheduler = optim.lr_scheduler.OneCycleLR(tg_optimizer, max_lr=args.base_lr,steps_per_epoch=len(trainloader),epochs=args.epochs)
elif args.scheduler == 'MultiStep':
tg_lr_scheduler = lr_scheduler.MultiStepLR(tg_optimizer, milestones=args.lr_strat,gamma=args.lr_factor)
cls_criterion = nn.CrossEntropyLoss().cuda()
### start train for epochs
for epoch in tqdm(range(args.epochs)):
if args.tensorboard:
writer.add_scalar('lr', tg_lr_scheduler.get_last_lr()[0], epoch)
tg_model.train()
print('LR:', tg_lr_scheduler.get_last_lr()[0])
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs = inputs.cuda()
targets = targets.cuda()
tg_optimizer.zero_grad()
old_outputs = ref_model(inputs)
outputs = tg_model(inputs)
loss = cls_criterion(outputs[:, 0:(args.nb_cl_fg + iteration * args.nb_cl)], targets)
loss.backward()
tg_optimizer.step()
if args.scheduler == 'cosWR':
tg_lr_scheduler.step(epoch + batch_idx / len(trainloader))
elif args.scheduler == '1cyc':
tg_lr_scheduler.step()
if args.scheduler == 'MultiStep':
tg_lr_scheduler.step()
print('Epoch: %d, loss_cls: %.4f' % (epoch, loss.item()))
if (epoch + 1) % args.val_epoch == 0:
test_ac(tg_model, X_valid_total, Y_valid_total,evalset, testloader, order, iteration, args)
if (epoch + 1) % args.save_epoch == 0:
ckp_name = os.path.join(args.tasks_model_path + '{}_run_{}_step_{}.pth').format(args.model, n_run, iteration)
torch.save(tg_model.state_dict(), ckp_name)
elif args.method == 'dfkd':
### set tensorboard path
tb_path = args.tensorboard_base_path + 'task{}/'.format(iteration)
os.makedirs(tb_path, exist_ok=True)
writer = SummaryWriter(tb_path)
### train generator first ###
generator = train_df_generator(ref_model, iteration, args)
### set bathsize of G images ###
if args.gtnbs_adaptive:
args.tn_batch_size_G = round((iteration * 5000)/len(trainloader))
### train new model ###
### get optimizer, scheduler
tg_optimizer = optim.SGD(tg_model.parameters(), lr=args.base_lr, momentum=args.custom_momentum,weight_decay=args.custom_weight_decay)
if args.scheduler == 'cosWR':
tg_lr_scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(tg_optimizer, args.epochs // 1, 1)
elif args.scheduler == '1cyc':
tg_lr_scheduler = optim.lr_scheduler.OneCycleLR(tg_optimizer, max_lr=args.base_lr,steps_per_epoch=len(trainloader),epochs=args.epochs)
elif args.scheduler == 'MultiStep':
tg_lr_scheduler = lr_scheduler.MultiStepLR(tg_optimizer, milestones=args.lr_strat,gamma=args.lr_factor)
cls_criterion = nn.CrossEntropyLoss().cuda()
### start train for epochs
for epoch in tqdm(range(args.epochs)):
if args.tensorboard:
writer.add_scalar('lr', tg_lr_scheduler.get_last_lr()[0], epoch)
tg_model.train()
print('LR:', tg_lr_scheduler.get_last_lr()[0])
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs = inputs.cuda()
targets = targets.cuda()
tg_optimizer.zero_grad()
if args.c_loss_type == 'ndkd':
old_outputs = ref_model(inputs)
outputs = tg_model(inputs)
### distillation loss for main classifier
soft_target = F.softmax(old_outputs[:, :num_old_classes] / args.T, dim=1)
logp = F.log_softmax(outputs[:, :num_old_classes] / args.T, dim=1)
loss_distill_new = -torch.mean(torch.sum(soft_target * logp, dim=1))
loss = loss_distill_new
elif args.c_loss_type == 'gdkd':
with torch.no_grad():
z = get_generator_initial_noise(args)
gen_imgs = generator(z)
old_gen_outputs = ref_model(gen_imgs)
gen_outputs = tg_model(gen_imgs.detach())
### distillation loss for generative old data
gen_soft_target = F.softmax(old_gen_outputs[:, :num_old_classes] / args.T, dim=1)
gen_logp = F.log_softmax(gen_outputs[:, :num_old_classes] / args.T, dim=1)
loss_distill_gen = -torch.mean(torch.sum(gen_soft_target * gen_logp, dim=1))
loss = loss_distill_gen
elif args.c_loss_type == 'gnkd_ncecut':
### forward for generative old data
with torch.no_grad():
z = get_generator_initial_noise(args)
gen_imgs = generator(z)
if args.generator_type == 'generator256':
gen_imgs = F.interpolate(gen_imgs, size=(224, 224), mode='bilinear',align_corners=False)
old_gen_outputs = ref_model(gen_imgs)
gen_outputs = tg_model(gen_imgs.detach())
outputs = tg_model(inputs)
### distillation loss for generative old data
gen_soft_target = F.softmax(old_gen_outputs[:, :num_old_classes] / args.T, dim=1)
gen_logp = F.log_softmax(gen_outputs[:, :num_old_classes] / args.T, dim=1)
loss_distill_gen = -torch.mean(torch.sum(gen_soft_target * gen_logp, dim=1))
### loss for new data
old_outputs = ref_model(inputs)
targets = set_targets_cut(args, targets, iteration)
loss_cls_new = cls_criterion(outputs[:, num_old_classes:(num_old_classes + args.nb_cl)],targets)
### distillation loss for new data
soft_target = F.softmax(old_outputs[:, :num_old_classes] / args.T, dim=1)
logp = F.log_softmax(outputs[:, :num_old_classes] / args.T, dim=1)
loss_distill_new = -torch.mean(torch.sum(soft_target * logp, dim=1))
if args.loss_ratio_adaptive:
if args.nb_cl_fg == args.nb_cl:
alpha = float(iteration) / float(iteration + 1)
else:
alpha = float(args.nb_cl_fg / args.nb_cl + iteration - 1) / float(
args.nb_cl_fg / args.nb_cl + iteration)
loss = (1.0 - alpha) * loss_cls_new + alpha * (loss_distill_gen + loss_distill_new)
else:
loss = args.n_ce * loss_cls_new + args.o_kd * loss_distill_gen + args.n_kd * loss_distill_new
elif args.c_loss_type == 'gnkdcecut_ncecut':
### forward for generative old data
with torch.no_grad():
z = get_generator_initial_noise(args)
gen_imgs = generator(z)
old_gen_outputs = ref_model(gen_imgs)
gen_outputs = tg_model(gen_imgs.detach())
outputs = tg_model(inputs)
### distillation loss for generative old data
gen_soft_target = F.softmax(old_gen_outputs[:, :num_old_classes] / args.T, dim=1)
gen_logp = F.log_softmax(gen_outputs[:, :num_old_classes] / args.T, dim=1)
loss_distill_gen = -torch.mean(torch.sum(gen_soft_target * gen_logp, dim=1))
### ce loss for generative old data
old_gen_outputs_sm = F.softmax(old_gen_outputs, dim=1)
gen_values, gen_targets = old_gen_outputs_sm.max(1)
gen_outputs = tg_model(gen_imgs.detach())
loss_cls_old = cls_criterion(gen_outputs[:, 0:num_old_classes], gen_targets)
### ce loss for new data
old_outputs = ref_model(inputs)
targets = set_targets_cut(args, targets, iteration)
loss_cls_new = cls_criterion(outputs[:, num_old_classes:(num_old_classes + args.nb_cl)],targets)
### distillation loss for new data
soft_target = F.softmax(old_outputs[:, :num_old_classes] / args.T, dim=1)
logp = F.log_softmax(outputs[:, :num_old_classes] / args.T, dim=1)
loss_distill_new = -torch.mean(torch.sum(soft_target * logp, dim=1))
if args.loss_ratio_adaptive:
alpha = float(iteration) / float(iteration + 1)
loss = (1.0 - alpha) * (loss_cls_old + loss_cls_new) + alpha * (loss_distill_gen + loss_distill_new)
else:
loss = args.o_ce * loss_cls_old + args.n_ce * loss_cls_new + args.o_kd * loss_distill_gen + args.n_kd * loss_distill_new
elif args.c_loss_type == 'gnkdce_nce': # old_new_no_cut_ce
### forward for generative old data
with torch.no_grad():
z = get_generator_initial_noise(args)
gen_imgs = generator(z)
old_gen_outputs = ref_model(gen_imgs)
gen_outputs = tg_model(gen_imgs.detach())
outputs = tg_model(inputs)
### distillation loss for generative old data
gen_soft_target = F.softmax(old_gen_outputs[:, :num_old_classes] / args.T, dim=1)
gen_logp = F.log_softmax(gen_outputs[:, :num_old_classes] / args.T, dim=1)
loss_distill_gen = -torch.mean(torch.sum(gen_soft_target * gen_logp, dim=1))
### ce loss for generative old data
old_gen_outputs_sm = F.softmax(old_gen_outputs, dim=1)
gen_values, gen_targets = old_gen_outputs_sm.max(1)
gen_outputs = tg_model(gen_imgs.detach())
loss_cls_old = cls_criterion(gen_outputs[:, 0:num_old_classes + args.nb_cl], gen_targets)
### ce loss for new data
old_outputs = ref_model(inputs)
loss_cls_new = cls_criterion(outputs[:, 0:(num_old_classes + args.nb_cl)], targets)
### distillation loss for new data
soft_target = F.softmax(old_outputs[:, :num_old_classes] / args.T, dim=1)
logp = F.log_softmax(outputs[:, :num_old_classes] / args.T, dim=1)
loss_distill_new = -torch.mean(torch.sum(soft_target * logp, dim=1))
if args.loss_ratio_adaptive:
alpha = float(iteration) / float(iteration + 1)
loss = (1.0 - alpha) * (loss_cls_old + loss_cls_new) + alpha * (loss_distill_gen + loss_distill_new)
else:
loss = args.o_ce * loss_cls_old + args.n_ce * loss_cls_new + args.o_kd * loss_distill_gen + args.n_kd * loss_distill_new
elif args.c_loss_type == 'gnce':
### forward for generative old data
with torch.no_grad():
z = Variable(torch.randn(args.tn_batch_size_G, args.latent_dim_G)).cuda()
gen_imgs = generator(z)
old_gen_outputs = ref_model(gen_imgs)
### ce loss for generative old data
old_gen_outputs_sm = F.softmax(old_gen_outputs, dim=1)
gen_values, gen_targets = old_gen_outputs_sm.max(1)
gen_outputs = tg_model(gen_imgs.detach())
loss_cls_old = cls_criterion(gen_outputs[:, 0:(num_old_classes + args.nb_cl)], gen_targets)
### forward for new task data
outputs = tg_model(inputs)
### ce loss for new data
loss_cls_new = cls_criterion(outputs[:, 0:(num_old_classes + args.nb_cl)], targets)
### loss_cls_new = torch.zeros(1).cuda()
if args.loss_ratio_adaptive:
alpha = float(iteration) / float(iteration + 1)
loss = alpha * loss_cls_old + (1.0 - alpha) * loss_cls_new
else:
loss = args.o_ce * loss_cls_old + args.n_ce * loss_cls_new
loss.backward()
tg_optimizer.step()
if args.scheduler == 'cosWR':
tg_lr_scheduler.step(epoch + batch_idx / len(trainloader))
elif args.scheduler == '1cyc':
tg_lr_scheduler.step()
if args.scheduler == 'MultiStep':
tg_lr_scheduler.step()
### print different loss for each epoch
if args.c_loss_type == 'ndkd':
print('Epoch: %d, loss_distill_new: %.4f' % (epoch, loss_distill_new.item()))
if args.tensorboard:
writer.add_scalar('loss/nkd', loss_distill_new.item(), epoch)
elif args.c_loss_type == 'gdkd':
print('Epoch: %d, loss_distill_gen: %.4f' % (epoch, loss_distill_gen.item()))
if args.tensorboard:
writer.add_scalar('loss/gkd', loss_distill_gen.item(), epoch)
elif args.c_loss_type == 'gnkd_ncecut':
print('Epoch: %d, loss_cls_new: %.4f, loss_distill_gen: %.4f, loss_distill_new: %.4f' % (
epoch, loss_cls_new.item(), loss_distill_gen.item(), loss_distill_new.item()))
if args.tensorboard:
writer.add_scalar('loss/gkd', loss_distill_gen.item(), epoch)
writer.add_scalar('loss/nce', loss_cls_new.item(), epoch)
writer.add_scalar('loss/nkd', loss_distill_new.item(), epoch)
elif args.c_loss_type == 'gnkdcecut_ncecut':
print('Epoch: %d, loss_cls_old: %.4f, loss_cls_new: %.4f, loss_distill_gen: %.4f, loss_distill_new: %.4f' % (
epoch, loss_cls_old.item(), loss_cls_new.item(), loss_distill_gen.item(),
loss_distill_new.item()))
if args.tensorboard:
writer.add_scalar('loss/gce', loss_cls_old.item(), epoch)
writer.add_scalar('loss/gkd', loss_distill_gen.item(), epoch)
writer.add_scalar('loss/nce', loss_cls_new.item(), epoch)
writer.add_scalar('loss/nkd', loss_distill_new.item(), epoch)
elif args.c_loss_type == 'gnkdce_nce':
print('Epoch: %d, loss_cls_old: %.4f, loss_cls_new: %.4f, loss_distill_gen: %.4f, loss_distill_new: %.4f' % (
epoch, loss_cls_old.item(), loss_cls_new.item(), loss_distill_gen.item(),
loss_distill_new.item()))
if args.tensorboard:
writer.add_scalar('loss/gce', loss_cls_old.item(), epoch)
writer.add_scalar('loss/gkd', loss_distill_gen.item(), epoch)
writer.add_scalar('loss/nce', loss_cls_new.item(), epoch)
writer.add_scalar('loss/nkd', loss_distill_new.item(), epoch)
elif args.c_loss_type == 'gnce':
print('Epoch: %d, loss_cls_old: %.4f, loss_cls_new: %.4f' % (
epoch, loss_cls_old.item(), loss_cls_new.item()))
if args.tensorboard:
writer.add_scalar('loss/oce', loss_cls_old.item(), epoch)
writer.add_scalar('loss/nce', loss_cls_new.item(), epoch)
### evaluate the val set and save model
acc_old, acc_new, acc_total = test_ac(tg_model, X_valid_total, Y_valid_total, evalset, testloader, order, iteration, args)
writer.add_scalar('acc/acc_old', acc_old, epoch)
writer.add_scalar('acc/acc_new', acc_new, epoch)
writer.add_scalar('acc/acc_total', acc_total, epoch)
if (epoch + 1) % args.save_epoch == 0:
ckp_name = os.path.join(args.tasks_model_path + '{}_run_{}_step_{}.pth').format(args.model, n_run, iteration)
torch.save(tg_model.state_dict(), ckp_name)
### for save image
# gen_preds = old_gen_outputs[:, :num_old_classes].data.max(1)[1]
# for id in range(gen_imgs.shape[0]):
# if not os.path.exists(
# tb_path + 'G_images{}/class{:03d}'.format(num_old_classes, gen_preds[id])):
# os.makedirs(
# tb_path + 'G_images{}/class{:03d}'.format(num_old_classes, gen_preds[id]))
# place_to_store = tb_path + 'G_images{}/class{:03d}/img_indexid{:05d}.jpg'.format(
# num_old_classes, gen_preds[id], id)
# from torchvision.utils import save_image
#
# save_image(gen_imgs[id], place_to_store, normalize=True, scale_each=True)