-
Notifications
You must be signed in to change notification settings - Fork 5
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Diffusion denoising branches are useless in unlabelled data #12
Comments
This is my visual code
Add visualization in the training loopif epoch_num % 10 == 0: # Visualize every 10 epochs
model.train() |
Is visualization conducted during the early training stage? If so, it would be difficult for the diffusion process to learn effective representations. |
The output of the diffused branches on the M&Ms dataset did learn the features (the diffused parts learned well from early to middle) and the segmentation results were as expected, but the output of the diffused branches on the Synapse dataset was all noise (all periods). |
I reproduced the code you provided in the Synapse dataset and got the same result as in the paper. However, I visualized the result of unlabeled data in the diffusion branch and found that the output was all noise, and it could not generate useful pseudo-tags with the weight adjustment branch to help training, but the weight adjustment branch became pseudo-tags entirely.
![Snipaste_2024-12-03_19-58-26](https://private-user-images.githubusercontent.com/176458324/400126003-fa9fad72-d7e8-4be3-bfd0-5b40b29fce0e.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkxMzc5MjksIm5iZiI6MTczOTEzNzYyOSwicGF0aCI6Ii8xNzY0NTgzMjQvNDAwMTI2MDAzLWZhOWZhZDcyLWQ3ZTgtNGJlMy1iZmQwLTViNDBiMjlmY2UwZS5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjA5JTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIwOVQyMTQ3MDlaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT0wZjBjNWFjMDBjYmFkY2NmMDg0MGVhYjhiZTcxYWRlZTFlYjNhMTlhZjg3MmM0MDlmODhiNjRjM2ZmYzBiOTE2JlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.DKL3ZZt9RW2rpx8np9YMVX_HmabPom5G_0kZjQEcJbc)
![Snipaste_2024-12-03_19-58-26](https://private-user-images.githubusercontent.com/176458324/400125989-405338b6-a749-4b00-a818-c6267315ff7b.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkxMzc5MjksIm5iZiI6MTczOTEzNzYyOSwicGF0aCI6Ii8xNzY0NTgzMjQvNDAwMTI1OTg5LTQwNTMzOGI2LWE3NDktNGIwMC1hODE4LWM2MjY3MzE1ZmY3Yi5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjA5JTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIwOVQyMTQ3MDlaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT1lZjZlM2JiMGYyYjY4Y2RlODI2YTRiZjNmZjNiY2NhOTNiOTgzY2Y0ZDBlNDA1NTM2ZDIwM2VlZTkwMzY5NzA0JlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.YbXps-aLo4T6xrhGL4JJ_0gJpymEiU8WksdMUtfYBcY)
![Snipaste_2024-12-04_12-59-55](https://private-user-images.githubusercontent.com/176458324/400125992-2ffabf92-2c07-465c-aef5-746112af23a3.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkxMzc5MjksIm5iZiI6MTczOTEzNzYyOSwicGF0aCI6Ii8xNzY0NTgzMjQvNDAwMTI1OTkyLTJmZmFiZjkyLTJjMDctNDY1Yy1hZWY1LTc0NjExMmFmMjNhMy5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjA5JTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIwOVQyMTQ3MDlaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT1lMGQ0ZThlMGNmMTAyMjkwZWNiZjcyOTg3MDE0ZjA5MTA5Zjg4NDM4YWRmMmNjYjNhMWVhNjAyNmRiOTdhNDE2JlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.MWFRqvEoOapaJm8wdcyHiZVKXVgLwUBJPyWJ74Lxtz4)
![Snipaste_2024-12-04_12-59-55](https://private-user-images.githubusercontent.com/176458324/400126011-86fe4eca-c64f-48aa-aac3-5d6fd0da885b.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkxMzc5MjksIm5iZiI6MTczOTEzNzYyOSwicGF0aCI6Ii8xNzY0NTgzMjQvNDAwMTI2MDExLTg2ZmU0ZWNhLWM2NGYtNDhhYS1hYWMzLTVkNmZkMGRhODg1Yi5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjA5JTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIwOVQyMTQ3MDlaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT1kZmQ0ODAxNjVlM2QyMGUyMjRlN2FjMGRmOWJhZTI3NzcwNDg0OWMxZTgxZTVhYWVlNTQwZTcwMmM4YjdmNTQzJlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.NdxEBe3n3E0giJAiEunp6dceAnh_uXfi_FefW0Cz1Rs)
The text was updated successfully, but these errors were encountered: