-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathstreamlit_audio.py
1139 lines (940 loc) · 44.6 KB
/
streamlit_audio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import pprint
import requests
from bs4 import BeautifulSoup
from gnews import GNews
from datetime import datetime
import edge_tts
import arxiv
import subprocess
import base64
import openai
import io
from PIL import Image
import streamlit as st
from langchain.utilities import GoogleSerperAPIWrapper
from langchain.llms.openai import OpenAI
from youtubesearchpython import *
from youtube_transcript_api import YouTubeTranscriptApi
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain.docstore.document import Document
from langchain.llms.openai import OpenAI
from langchain.chains.summarize import load_summarize_chain
from langchain.chat_models import ChatOpenAI
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import WebBaseLoader
from langchain.chains.summarize import load_summarize_chain
import os
openai.api_key = st.secrets["OPENAI_API_KEY"]
system_message = '''
You are a very talented editor, skilled at consolidating
fragmented information and introductions into a cohesive script, without missing any details.
Compile the news article based on the information in 【】.
'''
system_message_2 = '''
You are a linguist, skilled in summarizing textual content and presenting it in 3 bullet points using markdown.
'''
system_message_3 = '''
你是个语言学家,擅长把英文翻译成中文。要注意表达的流畅和使用中文的表达习惯。不要返回多余的信息,只把文字翻译成中文。
'''
def fetch_url_content(url):
try:
response = requests.get(url)
response.raise_for_status()
return response.text
except requests.RequestException as e:
st.error(f"Error fetching URL: {e}")
return None
def get_image_as_base64_string(path):
with open(path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode()
def get_resized_image_as_base64_string(path, factor=0.1):
# Open and resize the image
with Image.open(path) as img:
# Convert image to RGB if it's in RGBA
if img.mode == 'JPEG':
st.witre(img.mode)
img = img.convert('RGB')
width, height = img.size
new_size = (int(width * factor), int(height * factor))
img_resized = img.resize(new_size)
# Convert the resized image to a base64 string
buffered = io.BytesIO()
img_resized.save(buffered, format='PNG')
return base64.b64encode(buffered.getvalue()).decode()
def find_next_link_text(url, target_link, target_text):
"""
Find the first link and text after the given target link and text on the specified URL.
Parameters:
url (str): The URL of the webpage to scrape.
target_link (str): The specific link to be found.
target_text (str): The specific link text to be found.
Returns:
tuple: A tuple containing the next link and its text. Returns (None, None) if not found.
"""
# Send a GET request
response = requests.get(url)
response.raise_for_status() # This will raise an exception if there's an error
# Parse the content using BeautifulSoup
soup = BeautifulSoup(response.content, 'html.parser')
# Find all the <ul> elements
ul_elems = soup.find_all('ul')
# Initialize a list to store all links and their texts
all_links = []
# Extract links and texts from all <ul> elements
for ul_elem in ul_elems:
links = [(link.get('href'), link.text) for link in ul_elem.find_all('a')]
all_links.extend(links)
# Extract the first link and text after the specified link-text pair
found = False
for link, text in all_links:
if found:
return link, text
if link == target_link and text == target_text:
found = True
return None, None
def is_link_accessible(url):
"""Check if a link is accessible."""
try:
response = requests.get(url, timeout=10) # setting a timeout to avoid waiting indefinitely
# Check if the status code is 4xx or 5xx
if 400 <= response.status_code < 600:
return False
return True
except requests.RequestException:
return False
def get_latest_aws_ml_blog():
url = 'https://aws.amazon.com/blogs/machine-learning/'
response = requests.get(url)
if response.status_code != 200:
print(f"Failed to retrieve webpage. Status code: {response.status_code}")
return None, None
soup = BeautifulSoup(response.text, 'html.parser')
articles = soup.find_all('div', class_='lb-col lb-mid-18 lb-tiny-24')
if not articles:
print("No articles found.")
return None, None
title = articles[0].find('h2').text
link = articles[0].find('a')['href']
return title, link
def fetch_videos_from_channel(channel_id):
playlist = Playlist(playlist_from_channel_id(channel_id))
while playlist.hasMoreVideos:
playlist.getNextVideos()
return playlist.videos
def get_h1_text(url):
"""Fetches the text content of the first h1 element from the given URL."""
# Get the HTML content of the URL
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
# Find the first h1 element and get its text
h1_element = soup.find('h1', class_='entry-title')
if h1_element:
return h1_element.text.strip() # Remove any extra whitespaces
else:
return None
def get_transcript(video_id):
raw_data = YouTubeTranscriptApi.get_transcript(video_id)
texts = [item['text'] for item in raw_data]
return ' '.join(texts)
def extract_data_from_url(url, class_name):
"""
从指定的URL中提取特定类名的<a>标签的href属性和文本内容。
参数:
- url (str): 要提取数据的网页URL。
- class_name (str): 要查找的<a>标签的类名。
"""
response = requests.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'html.parser')
target_a = soup.find('a', class_=class_name)
if target_a:
data_mrf_link = target_a.get('href')
text = target_a.get_text().strip()
return (data_mrf_link, text)
else:
raise ValueError("找不到目标元素。")
else:
raise ConnectionError("请求失败。")
def split_text_into_documents(long_string, max_docs=20):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=20,
length_function=len,
)
texts = text_splitter.split_text(long_string)
docs = [Document(page_content=t) for t in texts[:max_docs]]
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
chunk_size=500, chunk_overlap=0
)
split_docs = text_splitter.split_documents(docs)
return split_docs
def autoplay_audio(file_path: str):
with open(file_path, "rb") as f:
data = f.read()
b64 = base64.b64encode(data).decode()
md = f"""
<audio controls autoplay style="width: 100%;">
<source src="data:audio/mp3;base64,{b64}" type="audio/mp3">
</audio>
"""
st.markdown(
md,
unsafe_allow_html=True,
)
def get_h1_from_url(url):
response = requests.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'html.parser')
# 根据class查找<h1>标签
h1_tag = soup.find("h1", class_="f-display-2")
if h1_tag:
return h1_tag.text
else:
print("Couldn't find the <h1> tag with the specified class on the page.")
return None
else:
print(f"Failed to fetch the webpage. Status code: {response.status_code}")
return None
def summarize_documents(split_docs):
llm = ChatOpenAI(temperature=1, model_name="gpt-3.5-turbo-16k")
chain = load_summarize_chain(llm, chain_type="map_reduce")
summary = chain.run(split_docs)
return summary
def get_completion_from_messages(messages,
model="gpt-3.5-turbo-16k",
temperature=1.5, max_tokens=7000):
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
)
return response.choices[0].message["content"]
def fetch_gnews_links(query, language='en', country='US', period='1d', start_date=None, end_date=None, max_results=5, exclude_websites=None):
"""
Fetch news links from Google News based on the provided query.
Parameters:
- query (str): The search query for fetching news.
- ... (other params): Additional parameters for customizing the news fetch.
Returns:
- List[str]: List of URLs based on the search query.
"""
# Ensure that the exclude_websites parameter is a list
content = {'title':[], 'summary':[], 'url':[]}
# Initialize GNews
google_news = GNews(language=language, country=country, period=period, start_date=start_date, end_date=end_date, max_results=max_results, exclude_websites=exclude_websites)
# Fetch news based on the query
news_items = google_news.get_news(query)
print(news_items)
# Extract URLs
urls = [item['url'] for item in news_items]
content['title'] = [item['title'] for item in news_items]
for url in urls:
content['url'].append(url)
content['summary'].append(summarize_website_content(url))
return content
def summarize_website_content(url, temperature=1, model_name="gpt-3.5-turbo-16k", chain_type="stuff"):
if True:
# Load the content from the given URL
loader = WebBaseLoader(url)
docs = loader.load()
# Initialize the ChatOpenAI model
llm = ChatOpenAI(temperature=temperature, model_name=model_name)
# Load the summarization chain
chain = load_summarize_chain(llm, chain_type=chain_type)
# Run the chain on the loaded documents
summarized_content = chain.run(docs)
return summarized_content
else:
return 'No result'
def get_transcript_link(url):
"""Fetches the first 'Transcript' link from the given URL."""
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
transcript_link_element = soup.find('a', string="Transcript")
if transcript_link_element:
return transcript_link_element['href']
else:
return None
def get_youtube_link(url):
"""Fetches the first 'Transcript' link from the given URL."""
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
transcript_link_element = soup.find('a', string="Video")
if transcript_link_element:
return transcript_link_element['href']
else:
return None
def get_latest_openai_blog_url():
base_url = "https://openai.com"
blog_url = f"{base_url}/blog"
response = requests.get(blog_url)
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'html.parser')
# 查找具有特定类名的<a>标签
target_link = soup.find("a", class_="ui-link group relative cursor-pointer")
if target_link:
# Combining base URL with the relative path
post_url = base_url + target_link['href']
return post_url
else:
print("Couldn't find the target post URL.")
return None
else:
print(f"Failed to fetch the webpage. Status code: {response.status_code}")
return None
def extract_blog_link_info(url):
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.3'
}
response = requests.get(url, headers=headers)
if response.status_code != 200:
return None, None
soup = BeautifulSoup(response.content, 'html.parser')
# 由于网站可能有多个这样的链接,我们只选择第一个匹配的项
link_element = soup.find('a', class_='f-post-link')
if link_element:
text_content = link_element.h3.text.strip()
href_link = link_element['href']
return text_content, href_link
else:
return None, None
def get_all_text_from_url(url):
# Fetch the content using requests
response = requests.get(url)
response.raise_for_status() # Raise an error if the request failed
# Parse the HTML using BeautifulSoup
soup = BeautifulSoup(response.text, 'html.parser')
# Extract all text
return ' '.join(soup.stripped_strings) # `stripped_strings` generates strings by stripping extra whitespaces
def contains_keywords(s):
keywords = ["AI", "GPT", "LLM"]
return any(keyword in s for keyword in keywords)
def input_page(st, **state):
# Include Font Awesome CSS
st.markdown(
"""
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.3/css/all.min.css">
""",
unsafe_allow_html=True,
)
# Include Font Awesome CSS
st.markdown(
"""
<style>
.social-icons {
gap: 20px; # Space between icons
}
.social-icons a {
margin-left: 7px;
margin-right: 7px;
}
.social-icons .fa-github {
color: gray;
}
.social-icons .fa-twitter {
color: gray;
}
.social-icons .fa-discord {
color: gray;
font-size: 2em;
}
</style>
""",
unsafe_allow_html=True,
)
# Add the GitHub, Twitter and discord icons with hyperlinks
discord = "https://discord.com/invite/aKkmnn4uWy"
image_path = 'MS_Startups_FH_lockup_hrz_alt_1C_Blk.png'
# Convert the resized image to a base64 string
st.markdown(
f"""
<h1 style='text-align: center; color: black; display: flex; align-items: center; justify-content: center;'>
<span style='background-color: #FF4B4B; border-radius: 50%; display: inline-flex; align-items: center; justify-content: center; width: 40px; height: 40px; margin-right: 10px; position: relative; top: -8px;'>
<i class='fas fa-play' style='color: white; font-size: 18px; position: relative; left: 1px;'></i>
</span>
Your Personal <span style='color: #FF4B4B; font-size: 1.25em;'>AI News</span> Podcast
</h1>
<div class="social-icons" style='text-align: center; color: black;'>
<a href="https://github.com/xl631212/llm_newsletter/tree/main" target="_blank"><i class="fab fa-github fa-2x"></i></a>
<a href="https://twitter.com/li_xuying" target="_blank"><i class="fab fa-twitter fa-2x"></i></a>
<a href="https://discord.com/invite/aKkmnn4uWy"><i class="fab fa-discord"></i></a>
</div>
""",
unsafe_allow_html=True
)
st.markdown("<h3 style='text-align: center; color: black;'>Empower Your Day with Real-Time Insights: Leveraging AI for Instant News <br> and Podcast Updates.</h3>", unsafe_allow_html=True)
st.markdown("""
<h4 style='text-align: center; color: #6C6C6C;'>
Choose your preferred options🔘 at the bottom, then double-click👆 the button below to initiate.
<br>
Sit back and relax while we craft your personalized LLM podcast within <span style='color: #2859C0; font-size: 1.15em;'>3 mins</span>.
</h4>
<br><br>
""",
unsafe_allow_html=True)
button_placeholder = st.empty()
st.markdown("<br>", unsafe_allow_html=True)
with st.container():
col3a, col4a, col5a= st.columns([4,7,4])
with col3a:
pass
with col4a:
col1a, col2a, col8a = st.columns([3,1,3])
with col1a:
st.write("**Options🔘:**")
with col5a:
pass
st.markdown("""
<style>
.stButton > button {
font-size: 100px;
width: 35%; /* 设置一个固定的宽度 */
height: 50px; /* 设置一个固定的高度 */
color: white;
background-color: #FF4B4B;
border: none;
border-radius: 15px;
margin: auto;
font-weight: bold;
display: flex;
justify-content: center;
align-items: center;
}
.stButton > button:hover {
background-color: #EFEFEF; /* 为按钮添加简单的悬停效果 */
color: #9A9A9A;
}
.stButton > button div p {
font-size: 24px; /* 改变按钮文本的字号 */
margin: 0; /* 移除段落的默认边距 */
}
.stButton > button div p:hover {
font-size: 20px;
}
</style>
""", unsafe_allow_html=True)
with st.container():
col3, col4, col5= st.columns([4,7,4])
with col3:
pass
with col4:
col1, col2, col8 = st.columns([4,2,4])
with col1:
language = st.selectbox(
"Language",
("English", "中文"),
key='ahaha'
)
audio_length_adjust = st.select_slider('Audio length', options=['short', 'medium', 'long'],value=('medium'))
if audio_length_adjust == 'short':
audio_length = 200
elif audio_length_adjust == 'medium':
audio_length = 350
else:
audio_length = 500
st.session_state.audio_length = audio_length
with col8:
options_2 = st.selectbox(
'In a tone of',
['Informal', 'Professional', 'Humorous'],
key='opt3'
)
day = st.select_slider('Information volume', options=['small', 'medium', 'large'],value=('medium'))
if day == 'small':
st.session_state.day = 2
st.session_state.arxiv = 2
elif day == 'medium':
st.session_state.day = 4
st.session_state.arxiv = 3
else:
st.session_state.day = 6
st.session_state.arxiv = 4
with col5:
pass
with button_placeholder:
# 创建按钮
if st.button("👆 Double-Click Generation"):
st.session_state.page = "two"
st.session_state.language = language
if options_2 == 'Informal':
st.session_state.tone = """read news and present them in a casual and conversational tone.
You should use everyday language, contractions, and slang to engage the audience and make the news more relatable. """
elif options_2 == 'Humorous':
st.session_state.tone = """read news and present in a comical and amusing tone.
You should be able to recognize and exaggerate humorous elements of each article along with jokes and deliver them in a way
that will make the audience laugh."""
image_path = 'MS_Startups_FH_lockup_hrz_alt_1C_Blk.png'
# Convert the resized image to a base64 string
image_base64 = get_resized_image_as_base64_string(image_path, factor=0.08)
st.markdown(f"""
<style>
.footer {{
position: fixed;
bottom: 0px;
left: 10px;
width: auto;
background-color: transparent;
text-align: right;
padding-right: 10px;
padding-bottom: 10px;
}}
</style>
<div class="footer">
<img src="data:image/jpg;base64,{image_base64}" alt="footer_image" />
</div>
""", unsafe_allow_html=True)
badge_code = """
<style>
.badge-container {
position: fixed;
bottom: 10px;
right: 10px;
z-index: 1000;
}
</style>
<div class="badge-container">
<a href="https://www.producthunt.com/posts/ai-daily-news-beta?utm_source=badge-featured&utm_medium=badge&utm_souce=badge-ai-daily-news-beta" target="_blank">
<img src="https://api.producthunt.com/widgets/embed-image/v1/featured.svg?post_id=418805&theme=light" alt="AI-Daily News (Beta) - AI-generated news podcast customized to your preferences | Product Hunt" style="width: 250px; height: 54px;" width="250" height="54" />
</a>
</div>
"""
st.markdown(badge_code, unsafe_allow_html=True)
def compute_page(st, **state):
# Include Font Awesome CSS
st.markdown(
"""
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.3/css/all.min.css">
""",
unsafe_allow_html=True,
)
# Include Font Awesome CSS
st.markdown(
"""
<style>
.social-icons {
gap: 20px; # Space between icons
}
.social-icons a {
margin-left: 7px;
margin-right: 7px;
}
.social-icons .fa-github {
color: gray;
}
.social-icons .fa-twitter {
color: gray;
}
.social-icons .fa-discord {
color: gray;
font-size: 2em;
}
</style>
""",
unsafe_allow_html=True,
)
# Add the GitHub, Twitter discord icons with hyperlinks
discord = "https://discord.com/invite/aKkmnn4uWy"
st.markdown(
f"""
<h1 style='text-align: center; color: black; display: flex; align-items: center; justify-content: center;'>
<span style='background-color: #FF4B4B; border-radius: 50%; display: inline-flex; align-items: center; justify-content: center; width: 40px; height: 40px; margin-right: 10px; position: relative; top: -8px;'>
<i class='fas fa-play' style='color: white; font-size: 18px; position: relative; left: 1px;'></i>
</span>
Your Personal <span style='color: #FF4B4B; font-size: 1.25em;'>AI News</span> Podcast
</h1>
<div class="social-icons" style='text-align: center; color: black;'>
<a href="https://github.com/xl631212/llm_newsletter/tree/main" target="_blank"><i class="fab fa-github fa-2x"></i></a>
<a href="https://twitter.com/li_xuying" target="_blank"><i class="fab fa-twitter fa-2x"></i></a>
<a href="https://discord.com/invite/aKkmnn4uWy"><i class="fab fa-discord"></i></a>
</div>
""",
unsafe_allow_html=True
)
st.markdown("""
<style>
/* This styles the main content excluding h1 and h2 */
#root .block-container {
width: 75%;
margin: auto;
}
</style>
""", unsafe_allow_html=True)
radio_placeholder = st.empty()
progress_placeholder = st.empty()
progress_text = "Searching for Openai Blog..."
my_bar = progress_placeholder.progress(0, text=progress_text)
openai_blog_url = get_latest_openai_blog_url()
if openai_blog_url:
openai_title = get_h1_from_url(openai_blog_url)
openai_blog = summarize_website_content(openai_blog_url)
my_bar.progress(10, text="Searching for Microsoft Blog...")
url = "https://blogs.microsoft.com/"
M_title, Microsoft_link = extract_blog_link_info(url)
bair_blog = summarize_website_content(Microsoft_link)
my_bar.progress(20, text="Searching for Amazon Blog...")
A_title, A_link = get_latest_aws_ml_blog()
mit_blog = summarize_website_content(A_link)
my_bar.progress(30, text="Searching for Apple Blog...")
url = 'https://machinelearning.apple.com/'
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
# 根据提供的HTML片段,定位到文章的标题和链接
article = soup.select_one('h3.post-title a')
apple_link = 'https://machinelearning.apple.com'+ article['href']
Apple_blog_title = article.text
Apple_blog = summarize_website_content(apple_link)
my_bar.progress(35, text='Searching for machine learning street talk...')
channel_id = "UCMLtBahI5DMrt0NPvDSoIRQ"
playlist = Playlist(playlist_from_channel_id(channel_id))
while playlist.hasMoreVideos:
playlist.getNextVideos()
machine_title = playlist.videos[0]['title']
machine_link = playlist.videos[0]['link']
machine_learning_boardcast = summarize_website_content(machine_link)
my_bar.progress(40, text='Searching for lex friman boardcast...')
url = "https://lexfridman.com/podcast/"
link = get_transcript_link(url)
L_title = get_h1_text(link)
youtube_link = get_youtube_link(url)
lexi_boardcast = summarize_website_content(youtube_link)
my_bar.progress(50, text="Searching for arxiv ...")
search = arxiv.Search(
query = "AI, LLM, machine learning, NLP",
max_results = st.session_state.arxiv,
sort_by = arxiv.SortCriterion.SubmittedDate
)
ariv_essay = ''
for result in search.results():
ariv_essay += result.summary
my_bar.progress(60, text="Searching Google News...")
google_news = fetch_gnews_links(query='AI, LLM, Machine learning', max_results = st.session_state.day)
my_bar.progress(70, text="Searching Techcrunch...")
url = 'https://techcrunch.com/category/artificial-intelligence/'
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
articles = soup.select('.post-block__title a')
data_mrf_link, h_title = articles[0]['href'],articles[0].text
h_content = summarize_website_content(data_mrf_link)
my_bar.progress(75, text="Nvidia Podcast...")
url = "https://blogs.nvidia.com/ai-podcast/"
target_link = "https://blogs.nvidia.com/ai-podcast/"
target_text = "AI Podcast"
next_link, Nvidia_title = find_next_link_text(url, target_link, target_text)
n_content = summarize_website_content(next_link)
my_bar.progress(80, text="Writing Newsletter...")
query = str(google_news['summary'])+ n_content + str(mit_blog) \
+ openai_blog
query = query.replace('<|endoftext|>', '')
messages = [
{'role':'system',
'content': system_message + "keep it equal to {} words.".format(st.session_state.audio_length) + st.session_state.tone},
{'role':'user',
'content': f"【{query}】"},]
response = get_completion_from_messages(messages)
print(response)
my_bar.progress(90, text="Generating Podcast...")
if st.session_state.language == 'English':
updated = response.replace('-', '').replace('--', '').replace('"', '').replace('“', '')
command = f'edge-tts --text "{updated}" --write-media hello.mp3'
subprocess.run(command, shell=True)
my_bar.progress(90, text="Generating Summary...")
query = response
messages = [
{'role':'system',
'content': system_message_2},
{'role':'user',
'content': f"【{query}】"},]
summary = get_completion_from_messages(messages)
else:
before = response
before = before.replace('<|endoftext|>', '')
messages = [
{'role':'system',
'content': system_message_3},
{'role':'user',
'content': f"【{before}】"},]
after = get_completion_from_messages(messages)
# 构建 edge-tts 命令
command = f'edge-tts --voice zh-CN-XiaoyiNeural --text "{after}" --write-media hello2.mp3'
# 使用 subprocess 运行命令
subprocess.run(command, shell=True)
my_bar.progress(100, text="Almost there...")
with radio_placeholder:
# 获取当前工作目录
current_directory = os.getcwd()
# 拼接完整的文件路径
if st.session_state.language == 'English':
file_path = os.path.join(current_directory, "hello.mp3")
autoplay_audio("hello.mp3")
else:
file_path = os.path.join(current_directory, "hello2.mp3")
autoplay_audio("hello2.mp3")
my_bar.empty()
if st.session_state.language == 'English':
st.subheader('Summary and Commentary', divider='rainbow')
st.markdown(summary)
st.subheader('Technology News', divider='red')
for i in range(len(google_news['title'])):
if len(google_news['summary'][i]) > 100:
st.markdown(f'<a href="{google_news["url"][i]}" style="color: #2859C0; text-decoration: none; \
font-size: 20px;font-weight: bold;"> {google_news["title"][i]} </a>\
<span style="margin-left: 10px; background-color: white; padding: 0px 7px; border: 1px solid rgb(251, 88, 88); border-radius: 20px; font-size: 7px; color: rgb(251, 88, 88)">Google News</span>', unsafe_allow_html=True)
st.markdown(google_news['summary'][i])
st.markdown(f'<a href="{data_mrf_link}" style="color: #2859C0; text-decoration: none; \
font-size: 20px;font-weight: bold;">{h_title}</a>\
<span style="margin-left: 10px; background-color: white; padding: 0px 7px; border: 1px solid rgb(251, 88, 88); border-radius: 20px; font-size: 7px; color: rgb(251, 88, 88)">Techcrunch</span>', unsafe_allow_html=True)
st.markdown(h_content)
st.subheader('Podcast and Speeches', divider='orange')
st.markdown(f'<a href="{youtube_link}" style="color: #2859C0; text-decoration: none; \
font-size: 20px;font-weight: bold;">{L_title}</a>\
<span style="margin-left: 10px; background-color: white; padding: 0px 7px; border: 1px solid rgb(251, 88, 88); border-radius: 20px; font-size: 7px; color: rgb(251, 88, 88)">Lex Fridman</span>', unsafe_allow_html=True)
st.markdown(lexi_boardcast)
st.markdown(f'<a href="{next_link}" style="color: #2859C0; text-decoration: none; \
font-size: 20px;font-weight: bold;">{Nvidia_title}</a>\
<span style="margin-left: 10px; background-color: white; padding: 0px 7px; border: 1px solid rgb(251, 88, 88); border-radius: 20px; font-size: 7px; color: rgb(251, 88, 88)">Nvidia</span>', unsafe_allow_html=True)
st.markdown(n_content)
st.markdown(f'<a href="{machine_link}" style="color: #2859C0; text-decoration: none; \
font-size: 20px;font-weight: bold;">{machine_title}</a>\
<span style="margin-left: 10px; background-color: white; padding: 0px 7px; border: 1px solid rgb(251, 88, 88); border-radius: 20px; font-size: 7px; color: rgb(251, 88, 88)">Machine Learning Street Talk</span>', unsafe_allow_html=True)
st.markdown(machine_learning_boardcast)
st.subheader('Technology Blogs', divider='green')
st.markdown(f'<a href= {openai_blog_url} style="color: #2859C0; text-decoration: none; \
font-size: 20px;font-weight: bold;"> {openai_title}</a>\
<span style="margin-left: 10px; background-color: white; padding: 0px 7px; border: 1px solid rgb(251, 88, 88); border-radius: 20px; font-size: 7px; color: rgb(251, 88, 88)">Openai</span>', unsafe_allow_html=True)
st.markdown(openai_blog)
st.markdown(f'<a href={Microsoft_link} style="color: #2859C0; text-decoration: none; \
font-size: 20px;font-weight: bold;"> {M_title}</a>\
<span style="margin-left: 10px; background-color: white; padding: 0px 7px; border: 1px solid rgb(251, 88, 88); border-radius: 20px; font-size: 7px; color: rgb(251, 88, 88)">Microsoft</span>', unsafe_allow_html=True)
st.markdown(bair_blog)
st.markdown(f'<a href="https://aws.amazon.com/blogs/machine-learning/" style="color: #2859C0; text-decoration: none; \
font-size: 20px;font-weight: bold;"> {A_title}</a>\
<span style="margin-left: 10px; background-color: white; padding: 0px 7px; border: 1px solid rgb(251, 88, 88); border-radius: 20px; font-size: 7px; color: rgb(251, 88, 88)">Amazon</span>', unsafe_allow_html=True)
st.markdown(mit_blog)
st.markdown(
f'<a href={apple_link} style="color: #2859C0; text-decoration: none; font-size: 20px; font-weight: bold;">{Apple_blog_title}</a>\
<span style="margin-left: 10px; background-color: white; padding: 0px 7px; border: 1px solid rgb(251, 88, 88); border-radius: 20px; font-size: 7px; color: rgb(251, 88, 88)">Apple</span>',
unsafe_allow_html=True
)
st.markdown(Apple_blog)
st.subheader('Cutting-edge Papers', divider='green')
for result in search.results():
st.markdown(f'<a href="{result.entry_id}" style="color: #2859C0; text-decoration: none; \
font-size: 20px;font-weight: bold;"> {result.title} </a>\
<span style="margin-left: 10px; background-color: white; padding: 0px 7px; border: 1px solid rgb(251, 88, 88); border-radius: 20px; font-size: 7px; color: rgb(251, 88, 88)">{result.primary_category}</span>\
', unsafe_allow_html=True)
st.markdown(result.summary)
elif st.session_state.language == '中文':
st.subheader('摘要与评论', divider='rainbow')
summary = after.replace('<|endoftext|>', '')
st.markdown(summary)
st.subheader('科技新闻', divider='rainbow')
for i in range(len(google_news['title'])):
title = google_news['title'][i]
messages = [
{'role':'system',
'content': system_message_3},
{'role':'user',
'content': f"【{title}】"},]
title = get_completion_from_messages(messages)
news_summary = google_news['summary'][i]
messages = [
{'role':'system',
'content': system_message_3},
{'role':'user',
'content': f"【{news_summary}】"},]
news_summary = get_completion_from_messages(messages)
st.markdown(f'<a href="{google_news["url"][i]}" style="color: #2859C0; text-decoration: none; \
font-size: 20px;font-weight: bold;"> {title} </a>\
<span style="margin-left: 10px; background-color: white; padding: 0px 7px; border: 1px solid rgb(251, 88, 88); border-radius: 20px; font-size: 7px; color: rgb(251, 88, 88)">Google News</span>', unsafe_allow_html=True)
st.markdown(news_summary)
news_summary = h_title
messages = [
{'role':'system',
'content': system_message_3},
{'role':'user',
'content': f"【{news_summary}】"},]
h_title = get_completion_from_messages(messages)
st.markdown(f'<a href="{data_mrf_link}" style="color: #2859C0; text-decoration: none; \
font-size: 20px;font-weight: bold;">{h_title}</a>\
<span style="margin-left: 10px; background-color: white; padding: 0px 7px; border: 1px solid rgb(251, 88, 88); border-radius: 20px; font-size: 7px; color: rgb(251, 88, 88)">Techcrunch</span>', unsafe_allow_html=True)
news_summary = h_content
messages = [
{'role':'system',
'content': system_message_3},
{'role':'user',
'content': f"【{news_summary}】"},]
h_content = get_completion_from_messages(messages)
st.markdown(h_content)
st.subheader('播客与博客', divider='orange')
news_summary = L_title
messages = [
{'role':'system',
'content': system_message_3},
{'role':'user',
'content': f"【{news_summary}】"},]
L_title = get_completion_from_messages(messages)
st.markdown(f'<a href="{youtube_link}" style="color: #2859C0; text-decoration: none; \
font-size: 20px;font-weight: bold;">{L_title}</a>\
<span style="margin-left: 10px; background-color: white; padding: 0px 7px; border: 1px solid rgb(251, 88, 88); border-radius: 20px; font-size: 7px; color: rgb(251, 88, 88)">Lex Fridman</span>', unsafe_allow_html=True)
news_summary = lexi_boardcast
messages = [
{'role':'system',
'content': system_message_3},
{'role':'user',
'content': f"【{news_summary}】"},]
lexi_boardcast = get_completion_from_messages(messages)
st.markdown(lexi_boardcast)
news_summary = Nvidia_title
messages = [
{'role':'system',
'content': system_message_3},
{'role':'user',
'content': f"【{news_summary}】"},]
Nvidia_title = get_completion_from_messages(messages)
st.markdown(f'<a href="{next_link}" style="color: #2859C0; text-decoration: none; \
font-size: 20px;font-weight: bold;">{Nvidia_title}</a>\
<span style="margin-left: 10px; background-color: white; padding: 0px 7px; border: 1px solid rgb(251, 88, 88); border-radius: 20px; font-size: 7px; color: rgb(251, 88, 88)">Nvidia</span>', unsafe_allow_html=True)
news_summary = n_content
messages = [
{'role':'system',
'content': system_message_3},
{'role':'user',
'content': f"【{news_summary}】"},]
n_content = get_completion_from_messages(messages)
st.markdown(n_content)
news_summary = machine_title
messages = [
{'role':'system',
'content': system_message_3},
{'role':'user',
'content': f"【{news_summary}】"},]
machine_title = get_completion_from_messages(messages)
st.markdown(f'<a href="{machine_link}" style="color: #2859C0; text-decoration: none; \
font-size: 20px;font-weight: bold;">{machine_title}</a>\
<span style="margin-left: 10px; background-color: white; padding: 0px 7px; border: 1px solid rgb(251, 88, 88); border-radius: 20px; font-size: 7px; color: rgb(251, 88, 88)">Machine Learning Street Talk</span>', unsafe_allow_html=True)
news_summary = machine_learning_boardcast
messages = [
{'role':'system',
'content': system_message_3},
{'role':'user',
'content': f"【{news_summary}】"},]
machine_learning_boardcast = get_completion_from_messages(messages)
st.markdown(machine_learning_boardcast)