-
Notifications
You must be signed in to change notification settings - Fork 314
/
Copy pathextract_subimages.py
168 lines (140 loc) · 5.4 KB
/
extract_subimages.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import cv2
import numpy as np
import os
import sys
from multiprocessing import Pool
from os import path as osp
from tqdm import tqdm
from basicsr.utils import scandir
def main():
"""A multi-thread tool to crop large images to sub-images for faster IO.
It is used for DIV2K dataset.
opt (dict): Configuration dict. It contains:
n_thread (int): Thread number.
compression_level (int): CV_IMWRITE_PNG_COMPRESSION from 0 to 9.
A higher value means a smaller size and longer compression time.
Use 0 for faster CPU decompression. Default: 3, same in cv2.
input_folder (str): Path to the input folder.
save_folder (str): Path to save folder.
crop_size (int): Crop size.
step (int): Step for overlapped sliding window.
thresh_size (int): Threshold size. Patches whose size is lower
than thresh_size will be dropped.
Usage:
For each folder, run this script.
Typically, there are four folders to be processed for DIV2K dataset.
DIV2K_train_HR
DIV2K_train_LR_bicubic/X2
DIV2K_train_LR_bicubic/X3
DIV2K_train_LR_bicubic/X4
After process, each sub_folder should have the same number of
subimages.
Remember to modify opt configurations according to your settings.
"""
opt = {}
opt['n_thread'] = 20
opt['compression_level'] = 3
# HR images
opt['input_folder'] = 'datasets/DIV2K/DIV2K_train_HR'
opt['save_folder'] = 'datasets/DIV2K/DIV2K_train_HR_sub'
opt['crop_size'] = 480
opt['step'] = 240
opt['thresh_size'] = 0
extract_subimages(opt)
# LRx2 images
opt['input_folder'] = 'datasets/DIV2K/DIV2K_train_LR_bicubic/X2'
opt['save_folder'] = 'datasets/DIV2K/DIV2K_train_LR_bicubic/X2_sub'
opt['crop_size'] = 240
opt['step'] = 120
opt['thresh_size'] = 0
extract_subimages(opt)
# LRx3 images
opt['input_folder'] = 'datasets/DIV2K/DIV2K_train_LR_bicubic/X3'
opt['save_folder'] = 'datasets/DIV2K/DIV2K_train_LR_bicubic/X3_sub'
opt['crop_size'] = 160
opt['step'] = 80
opt['thresh_size'] = 0
extract_subimages(opt)
# LRx4 images
opt['input_folder'] = 'datasets/DIV2K/DIV2K_train_LR_bicubic/X4'
opt['save_folder'] = 'datasets/DIV2K/DIV2K_train_LR_bicubic/X4_sub'
opt['crop_size'] = 120
opt['step'] = 60
opt['thresh_size'] = 0
extract_subimages(opt)
def extract_subimages(opt):
"""Crop images to subimages.
Args:
opt (dict): Configuration dict. It contains:
input_folder (str): Path to the input folder.
save_folder (str): Path to save folder.
n_thread (int): Thread number.
"""
input_folder = opt['input_folder']
save_folder = opt['save_folder']
if not osp.exists(save_folder):
os.makedirs(save_folder)
print(f'mkdir {save_folder} ...')
else:
print(f'Folder {save_folder} already exists. Exit.')
sys.exit(1)
img_list = list(scandir(input_folder, full_path=True))
pbar = tqdm(total=len(img_list), unit='image', desc='Extract')
pool = Pool(opt['n_thread'])
for path in img_list:
pool.apply_async(
worker, args=(path, opt), callback=lambda arg: pbar.update(1))
pool.close()
pool.join()
pbar.close()
print('All processes done.')
def worker(path, opt):
"""Worker for each process.
Args:
path (str): Image path.
opt (dict): Configuration dict. It contains:
crop_size (int): Crop size.
step (int): Step for overlapped sliding window.
thresh_size (int): Threshold size. Patches whose size is lower
than thresh_size will be dropped.
save_folder (str): Path to save folder.
compression_level (int): for cv2.IMWRITE_PNG_COMPRESSION.
Returns:
process_info (str): Process information displayed in progress bar.
"""
crop_size = opt['crop_size']
step = opt['step']
thresh_size = opt['thresh_size']
img_name, extension = osp.splitext(osp.basename(path))
# remove the x2, x3, x4 and x8 in the filename for DIV2K
img_name = img_name.replace('x2',
'').replace('x3',
'').replace('x4',
'').replace('x8', '')
img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
if img.ndim == 2:
h, w = img.shape
elif img.ndim == 3:
h, w, c = img.shape
else:
raise ValueError(f'Image ndim should be 2 or 3, but got {img.ndim}')
h_space = np.arange(0, h - crop_size + 1, step)
if h - (h_space[-1] + crop_size) > thresh_size:
h_space = np.append(h_space, h - crop_size)
w_space = np.arange(0, w - crop_size + 1, step)
if w - (w_space[-1] + crop_size) > thresh_size:
w_space = np.append(w_space, w - crop_size)
index = 0
for x in h_space:
for y in w_space:
index += 1
cropped_img = img[x:x + crop_size, y:y + crop_size, ...]
cropped_img = np.ascontiguousarray(cropped_img)
cv2.imwrite(
osp.join(opt['save_folder'],
f'{img_name}_s{index:03d}{extension}'), cropped_img,
[cv2.IMWRITE_PNG_COMPRESSION, opt['compression_level']])
process_info = f'Processing {img_name} ...'
return process_info
if __name__ == '__main__':
main()