forked from arms22/SoftModem
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSoftModem.cpp
311 lines (270 loc) · 7.94 KB
/
SoftModem.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
#include "SoftModem.h"
#define TX_PIN (3)
#define RX_PIN1 (6) // AIN0
#define RX_PIN2 (7) // AIN1
SoftModem *SoftModem::activeObject = 0;
SoftModem::SoftModem() {
}
SoftModem::~SoftModem() {
end();
}
#if F_CPU == 16000000
#if SOFT_MODEM_BAUD_RATE <= 126
#define TIMER_CLOCK_SELECT (7)
#define MICROS_PER_TIMER_COUNT (clockCyclesToMicroseconds(1024))
#elif SOFT_MODEM_BAUD_RATE <= 315
#define TIMER_CLOCK_SELECT (6)
#define MICROS_PER_TIMER_COUNT (clockCyclesToMicroseconds(256))
#elif SOFT_MODEM_BAUD_RATE <= 630
#define TIMER_CLOCK_SELECT (5)
#define MICROS_PER_TIMER_COUNT (clockCyclesToMicroseconds(128))
#elif SOFT_MODEM_BAUD_RATE <= 1225
#define TIMER_CLOCK_SELECT (4)
#define MICROS_PER_TIMER_COUNT (clockCyclesToMicroseconds(64))
#else
#define TIMER_CLOCK_SELECT (3)
#define MICROS_PER_TIMER_COUNT (clockCyclesToMicroseconds(32))
#endif
#else
#if SOFT_MODEM_BAUD_RATE <= 126
#define TIMER_CLOCK_SELECT (6)
#define MICROS_PER_TIMER_COUNT (clockCyclesToMicroseconds(256))
#elif SOFT_MODEM_BAUD_RATE <= 315
#define TIMER_CLOCK_SELECT (5)
#define MICROS_PER_TIMER_COUNT (clockCyclesToMicroseconds(128))
#elif SOFT_MODEM_BAUD_RATE <= 630
#define TIMER_CLOCK_SELECT (4)
#define MICROS_PER_TIMER_COUNT (clockCyclesToMicroseconds(64))
#else
#define TIMER_CLOCK_SELECT (3)
#define MICROS_PER_TIMER_COUNT (clockCyclesToMicroseconds(32))
#endif
#endif
#define BIT_PERIOD (1000000/SOFT_MODEM_BAUD_RATE)
#define HIGH_FREQ_MICROS (1000000/SOFT_MODEM_HIGH_FREQ)
#define LOW_FREQ_MICROS (1000000/SOFT_MODEM_LOW_FREQ)
#define HIGH_FREQ_CNT (BIT_PERIOD/HIGH_FREQ_MICROS)
#define LOW_FREQ_CNT (BIT_PERIOD/LOW_FREQ_MICROS)
#define MAX_CARRIR_BITS (40000/BIT_PERIOD) // 40ms
#define TCNT_BIT_PERIOD (BIT_PERIOD/MICROS_PER_TIMER_COUNT)
#define TCNT_HIGH_FREQ (HIGH_FREQ_MICROS/MICROS_PER_TIMER_COUNT)
#define TCNT_LOW_FREQ (LOW_FREQ_MICROS/MICROS_PER_TIMER_COUNT)
#define TCNT_HIGH_TH_L (TCNT_HIGH_FREQ * 0.80)
#define TCNT_HIGH_TH_H (TCNT_HIGH_FREQ * 1.15)
#define TCNT_LOW_TH_L (TCNT_LOW_FREQ * 0.85)
#define TCNT_LOW_TH_H (TCNT_LOW_FREQ * 1.20)
#if SOFT_MODEM_DEBUG_ENABLE
static volatile uint8_t *_portLEDReg;
static uint8_t _portLEDMask;
#endif
enum { START_BIT = 0, DATA_BIT = 8, STOP_BIT = 9, INACTIVE = 0xff };
void SoftModem::begin(void)
{
pinMode(RX_PIN1, INPUT);
digitalWrite(RX_PIN1, LOW);
pinMode(RX_PIN2, INPUT);
digitalWrite(RX_PIN2, LOW);
pinMode(TX_PIN, OUTPUT);
digitalWrite(TX_PIN, LOW);
_txPortReg = portOutputRegister(digitalPinToPort(TX_PIN));
_txPortMask = digitalPinToBitMask(TX_PIN);
#if SOFT_MODEM_DEBUG_ENABLE
_portLEDReg = portOutputRegister(digitalPinToPort(13));
_portLEDMask = digitalPinToBitMask(13);
pinMode(13, OUTPUT);
#endif
_recvStat = INACTIVE;
_recvBufferHead = _recvBufferTail = 0;
SoftModem::activeObject = this;
_lastTCNT = TCNT2;
_lastDiff = _lowCount = _highCount = 0;
TCCR2A = 0;
TCCR2B = TIMER_CLOCK_SELECT;
ACSR = _BV(ACIE) | _BV(ACIS1); // set Analog Comparator Interrupt Enable | trgger on falling edge
DIDR1 = _BV(AIN1D) | _BV(AIN0D); // digital port off
}
void SoftModem::end(void)
{
ACSR &= ~(_BV(ACIE));
TIMSK2 &= ~(_BV(OCIE2A));
DIDR1 &= ~(_BV(AIN1D) | _BV(AIN0D));
SoftModem::activeObject = 0;
}
void SoftModem::demodulate(void)
{
uint8_t t = TCNT2; //get time in Timer 2
uint8_t diff;
if(TIFR2 & _BV(TOV2)){ // Timer 2 overflow
TIFR2 |= _BV(TOV2);
diff = (255 - _lastTCNT) + t + 1;
}
else{
diff = t - _lastTCNT;
}
if(diff < (uint8_t)(TCNT_HIGH_TH_L)) // Noise?
return;
_lastTCNT = t;
if(diff > (uint8_t)(TCNT_LOW_TH_H))
return;
// _lastDiff = (diff >> 1) + (diff >> 2) + (_lastDiff >> 2);
_lastDiff = diff;
if(_lastDiff >= (uint8_t)(TCNT_LOW_TH_L)){ // recv low frequency signal
_lowCount += _lastDiff;
if((_recvStat == INACTIVE) && (_lowCount >= (uint8_t)(TCNT_BIT_PERIOD * 0.5))){ // maybe Start-Bit , now at half of start bit
_recvStat = START_BIT;
_highCount = 0;
_recvBits = 0;
OCR2A = t + (uint8_t)(TCNT_BIT_PERIOD) - _lowCount; // 1 bit period after detected, set next timer2 interrupt at half TCNT_BIT_PERIOD later
TIFR2 |= _BV(OCF2A);
TIMSK2 |= _BV(OCIE2A);
}
}
else if(_lastDiff <= (uint8_t)(TCNT_HIGH_TH_H)){ // recv high frequency signal
_highCount += _lastDiff;
if((_recvStat == INACTIVE) && (_highCount >= (uint8_t)(TCNT_BIT_PERIOD))){
_lowCount = _highCount = 0;
}
}
}
//analog voltage compare interrupt (AIN0 and AIN1)
ISR(ANALOG_COMP_vect)
{
SoftModem::activeObject->demodulate();
}
void SoftModem::recv(void)
{
uint8_t high;
if(_highCount > _lowCount){
if(_highCount >= (uint8_t)TCNT_BIT_PERIOD)
_highCount -= (uint8_t)TCNT_BIT_PERIOD;
else
_highCount = 0;
high = 0x80;
}
else{
if(_lowCount >= (uint8_t)TCNT_BIT_PERIOD)
_lowCount -= (uint8_t)TCNT_BIT_PERIOD;
else
_lowCount = 0;
high = 0x00;
}
if(_recvStat == START_BIT){ // Start bit
if(!high){
_recvStat++;
}else{
goto end_recv;
}
}
else if(_recvStat <= DATA_BIT) { // Data bits
_recvBits >>= 1;
_recvBits |= high;
_recvStat++;
}
else if(_recvStat == STOP_BIT){ // Stop bit
uint8_t new_tail = (_recvBufferTail + 1) & (SOFT_MODEM_RX_BUF_SIZE - 1);
if(new_tail != _recvBufferHead){
_recvBuffer[_recvBufferTail] = _recvBits;
_recvBufferTail = new_tail;
}
goto end_recv;
}
else{
end_recv:
_recvStat = INACTIVE;
TIMSK2 &= ~_BV(OCIE2A);
}
}
//timer2 interrupt
ISR(TIMER2_COMPA_vect)
{
OCR2A += (uint8_t)TCNT_BIT_PERIOD;
SoftModem::activeObject->recv();
#if SOFT_MODEM_DEBUG_ENABLE
*_portLEDReg ^= _portLEDMask;
#endif
}
int SoftModem::available()
{
return (_recvBufferTail + SOFT_MODEM_RX_BUF_SIZE - _recvBufferHead) & (SOFT_MODEM_RX_BUF_SIZE - 1);
}
int SoftModem::read()
{
if(_recvBufferHead == _recvBufferTail)
return -1;
int d = _recvBuffer[_recvBufferHead];
_recvBufferHead = (_recvBufferHead + 1) & (SOFT_MODEM_RX_BUF_SIZE - 1);
return d;
}
int SoftModem::peek()
{
if(_recvBufferHead == _recvBufferTail)
return -1;
return _recvBuffer[_recvBufferHead];
}
void SoftModem::flush()
{
_recvBufferHead = _recvBufferTail = 0;
}
void SoftModem::modulate(uint8_t b)
{
uint8_t cnt,tcnt,tcnt2;
if(b){
cnt = (uint8_t)(HIGH_FREQ_CNT);
tcnt2 = (uint8_t)(TCNT_HIGH_FREQ / 2);
tcnt = (uint8_t)(TCNT_HIGH_FREQ) - tcnt2;
}else{
cnt = (uint8_t)(LOW_FREQ_CNT);
tcnt2 = (uint8_t)(TCNT_LOW_FREQ / 2);
tcnt = (uint8_t)(TCNT_LOW_FREQ) - tcnt2;
}
do {
cnt--;
{
OCR2B += tcnt;
TIFR2 |= _BV(OCF2B);
while(!(TIFR2 & _BV(OCF2B)));
}
*_txPortReg ^= _txPortMask;
{
OCR2B += tcnt2;
TIFR2 |= _BV(OCF2B);
while(!(TIFR2 & _BV(OCF2B)));
}
*_txPortReg ^= _txPortMask;
} while (cnt);
}
// Brief carrier tone before each transmission
// 1 start bit (LOW)
// 8 data bits, LSB first
// 1 stop bit (HIGH)
// ...
// 1 push bit (HIGH)
size_t SoftModem::write(const uint8_t *buffer, size_t size)
{
uint8_t cnt = ((micros() - _lastWriteTime) / BIT_PERIOD) + 1;
if(cnt > MAX_CARRIR_BITS)
cnt = MAX_CARRIR_BITS;
for(uint8_t i = 0; i<cnt; i++)
modulate(HIGH);
size_t n = size;
while (size--) {
uint8_t data = *buffer++;
modulate(LOW); // Start Bit
for(uint8_t mask = 1; mask; mask <<= 1){ // Data Bits
if(data & mask){
modulate(HIGH);
}
else{
modulate(LOW);
}
}
modulate(HIGH); // Stop Bit
}
modulate(HIGH); // Push Bit
_lastWriteTime = micros();
return n;
}
size_t SoftModem::write(uint8_t data)
{
return write(&data, 1);
}