Skip to content

Latest commit

 

History

History
78 lines (61 loc) · 4.71 KB

README.md

File metadata and controls

78 lines (61 loc) · 4.71 KB

Facial Feature Extractor

This repository contains a server and client to run extraction of facial templates 😀.

🖥️ Server

Note: You must be part of the sudoers to run the code below without sudo. See here for details.

To launch the backend, you need to use the server.sh script.

Some options available are shown in the table below:

Option Description Default Required
--start-port Starting port range for containers 18081 No
--gpus-start GPU device number to start with 0 No
--gpus Number of gpus, starting from gpus-start, to use 1 No
--workers Number of backend processes per container 1 No
--fp16 Use half-point precision True No
--detection-model Model use for face detection scrfd_10g_gnkps No
--recognition-model Model use for facial feature extraction glintr100 No
--models-path Directory where pre-downloaded models can be found $PWD/models No
--data-path Path where the data is located None Yes

As an example, for 1 container (1 GPU / 1 worker), with the data directory being /path/to/sample/data, you would do:

./server.sh --data-path /path/to/sample/data

The data path must be the same for the client and the server.

Note: If the container fails because it is missing the pydantic module, add its entry to the InsightFace-Server/src/requirements.txt file.

💻 Client

Note: You must be part of the sudoers to run the code below without sudo. See here for details.

Navigate to the InsightFace-Client directory first and then build the image.

cd InsightFace-Client
docker build -t xavier/arcface:v0.8.2.0 .

To start the client, you should use the docker run command. In the example below, we specify the data directory as /data and the output directory as /output. Within the output directory, you will find cropped faces (if requested with the --save-crops flag) in the /output/crops subdirectory, templates in the /output/templates subdirectory, and a summary of enrollments and failures in /output/summary. Please note that to ensure crops are saved, regardless of the flag, the mode should be set to either all or detect_only. The default mode is all.

docker run --rm \
-v /home/xavier/Documents/git/ArcFace/sample:/data \
-v /home/xavier/Documents/git/ArcFace/output:/output \
--net host \
xavier/arcface:v0.8.2.0 \
--exclude \
--save-crops \
--extension ".JPG"

Additional options can be appended to the command. Invoke the command with -h to see more information.

docker run --rm \
-v /home/xavier/Documents/git/ArcFace/sample:/data \
-v /home/xavier/Documents/git/ArcFace/output:/output \
--net host \
xavier/arcface:v0.8.2.0 -h

Alternatively, see the table below:

Option Description Default Required
--host Server hostname or IP localhost No
--port Server port 18081 No
--threads Number of worker processes for data dispatch 10 No
--batch Number of images per server request 1 No
--dir Path to directory with images /data No
--output Directory where templates are saved /output No
--exclude Exclude images with no face detected False No
--save-crops Saves crops when face detected False No
--extension Allowed image extensions '.jpeg'
'.jpg'
'.bmp'
'.png'
'.webp'
'.tiff'
No