-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlivox_rosdetection0.py
369 lines (306 loc) · 13.4 KB
/
livox_rosdetection0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import os
import numpy as np
import tensorflow as tf
import copy
import config.config as cfg
from networks.model import *
import lib_cpp
import time
import rospy
import message_filters
import std_msgs.msg
from geometry_msgs.msg import Point
from sensor_msgs.msg import PointCloud2
from geometry_msgs.msg import Point32
from geometry_msgs.msg import Quaternion
import sensor_msgs.point_cloud2 as pcl2
from visualization_msgs.msg import Marker
from visualization_msgs.msg import MarkerArray
import numba
from numba import jit
import ctypes
import ros_numpy
mnum = 0
marker_array = MarkerArray()
marker_array_text = MarkerArray()
DX = cfg.VOXEL_SIZE[0]
DY = cfg.VOXEL_SIZE[1]
DZ = cfg.VOXEL_SIZE[2]
X_MIN = cfg.RANGE['X_MIN']
X_MAX = cfg.RANGE['X_MAX']
Y_MIN = cfg.RANGE['Y_MIN']
Y_MAX = cfg.RANGE['Y_MAX']
Z_MIN = cfg.RANGE['Z_MIN']
Z_MAX = cfg.RANGE['Z_MAX']
overlap = cfg.OVERLAP
HEIGHT = round((X_MAX - X_MIN+2*overlap) / DX)
WIDTH = round((Y_MAX - Y_MIN) / DY)
CHANNELS = round((Z_MAX - Z_MIN) / DZ)
GROUND_FIX = 1
print(HEIGHT, WIDTH, CHANNELS)
T1 = np.array([[0.0, -1.0, 0.0, 0.0],
[0.0, 0.0, -1.0, 0.0],
[1.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 1.0]]
)
lines = [[0, 1], [1, 2], [2, 3], [3, 0], [4, 5], [5, 6],
[6, 7], [7, 4], [0, 4], [1, 5], [2, 6], [3, 7]]
class Detector(object):
def __init__(self, *, nms_threshold=0.1, weight_file=None):
self.net = livox_model(HEIGHT, WIDTH, CHANNELS)
with tf.Graph().as_default():
with tf.device('/gpu:'+str(cfg.GPU_INDEX)):
input_bev_img_pl = \
self.net.placeholder_inputs(cfg.BATCH_SIZE)
end_points = self.net.get_model(input_bev_img_pl)
saver = tf.compat.v1.train.Saver()
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
self.sess = tf.compat.v1.Session(config=config)
saver.restore(self.sess, cfg.MODEL_PATH)
self.ops = {'input_bev_img_pl': input_bev_img_pl, # input
'end_points': end_points, # output
}
rospy.init_node('livox_test', anonymous=True)
self.sub = rospy.Subscriber(
"/livox/lidar", PointCloud2, queue_size=1, callback=self.LivoxCallback)
# self.livox1 = message_filters.Subscriber("/livox/lidar_3WEDJC6001Z2681", PointCloud2, queue_size=1)
# self.livox2 = message_filters.Subscriber("/livox/lidar_3WEDK2K001T0731", PointCloud2, queue_size=1)
# livox_sync = message_filters.ApproximateTimeSynchronizer([self.livox1, self.livox2],10,0.1,allow_headerless=True)
# livox_sync.registerCallback(self.LivoxCallback)
self.marker_pub = rospy.Publisher(
'/detect_box3d', MarkerArray, queue_size=1)
self.marker_text_pub = rospy.Publisher(
'/text_det', MarkerArray, queue_size=1)
# self.pointcloud_pub = rospy.Publisher(
# '/pointcloud', PointCloud2, queue_size=1)
def roty(self, t):
c = np.cos(t)
s = np.sin(t)
return np.array([[c, 0, s],
[0, 1, 0],
[-s, 0, c]])
def get_3d_box(self, box_size, heading_angle, center):
''' Calculate 3D bounding box corners from its parameterization.
Input:
box_size: tuple of (l,w,h)
heading_angle: rad scalar, clockwise from pos x axis
center: tuple of (x,y,z)
Output:
corners_3d: numpy array of shape (8,3) for 3D box cornders
'''
R = self.roty(heading_angle)
l, w, h = box_size
x_corners = [l/2, l/2, -l/2, -l/2, l/2, l/2, -l/2, -l/2]
y_corners = [h/2, h/2, h/2, h/2, -h/2, -h/2, -h/2, -h/2]
z_corners = [w/2, -w/2, -w/2, w/2, w/2, -w/2, -w/2, w/2]
corners_3d = np.dot(R, np.vstack([x_corners, y_corners, z_corners]))
corners_3d[0, :] = corners_3d[0, :] + center[0]
corners_3d[1, :] = corners_3d[1, :] + center[1]
corners_3d[2, :] = corners_3d[2, :] + center[2]
corners_3d = np.transpose(corners_3d)
return corners_3d
def detect(self, batch_bev_img):
feed_dict = {self.ops['input_bev_img_pl']: batch_bev_img}
feature_out,\
= self.sess.run([self.ops['end_points']['feature_out'],
], feed_dict=feed_dict)
result = lib_cpp.cal_result(feature_out[0,:,:,:], \
cfg.BOX_THRESHOLD,overlap,X_MIN,HEIGHT, WIDTH, cfg.VOXEL_SIZE[0], cfg.VOXEL_SIZE[1], cfg.VOXEL_SIZE[2], cfg.NMS_THRESHOLD)
is_obj_list = result[:, 0].tolist()
reg_m_x_list = result[:, 5].tolist()
reg_w_list = result[:, 4].tolist()
reg_l_list = result[:, 3].tolist()
obj_cls_list = result[:, 1].tolist()
reg_m_y_list = result[:, 6].tolist()
reg_theta_list = result[:, 2].tolist()
reg_m_z_list = (result[:, 8] - GROUND_FIX).tolist()
reg_h_list = result[:, 7].tolist()
results = []
for i in range(len(is_obj_list)):
box3d_pts_3d = np.ones((8, 4), float)
box3d_pts_3d[:, 0:3] = self.get_3d_box( \
(reg_l_list[i], reg_w_list[i], reg_h_list[i]), \
reg_theta_list[i], (reg_m_x_list[i], reg_m_z_list[i], reg_m_y_list[i]))
box3d_pts_3d = np.dot(np.linalg.inv(T1), box3d_pts_3d.T).T # n*4
if int(obj_cls_list[i]) == 0:
cls_name = "car"
elif int(obj_cls_list[i]) == 1:
cls_name = "bus"
elif int(obj_cls_list[i]) == 2:
cls_name = "truck"
elif int(obj_cls_list[i]) == 3:
cls_name = "pedestrian"
else:
cls_name = "bimo"
results.append([cls_name,
box3d_pts_3d[0][0], box3d_pts_3d[1][0], box3d_pts_3d[2][0], box3d_pts_3d[3][0],
box3d_pts_3d[4][0], box3d_pts_3d[5][0], box3d_pts_3d[6][0], box3d_pts_3d[7][0],
box3d_pts_3d[0][1], box3d_pts_3d[1][1], box3d_pts_3d[2][1], box3d_pts_3d[3][1],
box3d_pts_3d[4][1], box3d_pts_3d[5][1], box3d_pts_3d[6][1], box3d_pts_3d[7][1],
box3d_pts_3d[0][2], box3d_pts_3d[1][2], box3d_pts_3d[2][2], box3d_pts_3d[3][2],
box3d_pts_3d[4][2], box3d_pts_3d[5][2], box3d_pts_3d[6][2], box3d_pts_3d[7][2],
is_obj_list[i]])
return results
def LivoxCallback(self, msg):
global mnum
header = std_msgs.msg.Header()
header.stamp = rospy.Time.now()
header.frame_id = 'livox_frame'
points_list = []
t0 = time.time()
# for point in pcl2.read_points(msg, skip_nans=True, field_names=("x", "y", "z", "intensity")):
# #if point[0] == 0 and point[1] == 0 and point[2] == 0:
# # continue
# if np.abs(point[0]) < 2.0 and np.abs(point[1]) < 1.5:
# continue
# if np.abs(point[0]) > X_MAX or \
# np.abs(point[1]) > Y_MAX or \
# np.abs(point[2]) > Z_MAX:
# continue
# points_list.append(point)
points_list = pcl2.read_points(msg, skip_nans=True, field_names=("x", "y", "z", "intensity"))
# ll = ctypes.cdll.LoadLibrary
# lib = ll('./pc_process.so')
# lib.pc(points_list)
points_list = ros_numpy.numpify(msg)
points_list = np.stack(points_list[f] for f in ('x', 'y', 'z')).T
# points_list = np.asarray(points_list[0: 3], dtype=np.float32)
# points_list = list(points_list)
# t0_5 = time.time()
# print('point_processing_time_1(ms)', 1000*(t0_5-t0))
# points_list = np.asarray(points_list, dtype=np.float32) #转为np.array的过程很耗时
# pointcloud_msg = pcl2.create_cloud_xyz32(header, points_list[:, 0:3])
t1 = time.time()
print('\npoint_processing_time(ms)', 1000*(t1-t0))
vox = data2voxel(points_list)
# t1_5 = time.time()
# print('voxelization_time_1(ms)', 1000*(t1_5-t1))
vox = np.expand_dims(vox, axis=0)
t2 = time.time()
print('voxelization_time(ms)', 1000*(t2-t1))
result = self.detect(vox)
t3 = time.time()
print('det_time(ms)', 1000*(t3-t2))
print('det_numbers', len(result))
for ii in range(len(result)):
result[ii][1:9] = list(np.array(result[ii][1:9]))
result[ii][9:17] = list(np.array(result[ii][9:17]))
result[ii][17:25] = list(np.array(result[ii][17:25]))
boxes = result
marker_array.markers.clear()
marker_array_text.markers.clear()
for obid in range(len(boxes)):
ob = boxes[obid]
# tid = 0
detect_points_set = []
for i in range(0, 8):
detect_points_set.append(Point(ob[i+1], ob[i+9], ob[i+17]))
marker = Marker()
marker.header.frame_id = 'livox_frame'
marker.header.stamp = rospy.Time.now()
marker.id = obid*2
marker.action = Marker.ADD
marker.type = Marker.LINE_LIST
marker.lifetime = rospy.Duration(0)
marker.color.r = 1
marker.color.g = 0
marker.color.b = 0
marker.color.a = 1
marker.scale.x = 0.2
marker.points = []
for line in lines:
marker.points.append(detect_points_set[line[0]])
marker.points.append(detect_points_set[line[1]])
marker_array.markers.append(marker)
marker1 = Marker()
marker1.header.frame_id = 'livox_frame'
marker1.header.stamp = rospy.Time.now()
marker1.ns = "basic_shapes"
marker1.id = obid*2+1
marker1.action = Marker.ADD
marker1.type = Marker.TEXT_VIEW_FACING
marker1.lifetime = rospy.Duration(0)
marker1.color.r = 1 # cr
marker1.color.g = 1 # cg
marker1.color.b = 1 # cb
marker1.color.a = 1
marker1.scale.z = 1
marker1.pose.orientation.w = 1.0
marker1.pose.position.x = (ob[1]+ob[3])/2
marker1.pose.position.y = (ob[9]+ob[11])/2
marker1.pose.position.z = (ob[21]+ob[23])/2+1
marker1.text = ob[0]+':'+str(np.floor(ob[25]*100)/100)
marker_array_text.markers.append(marker1)
if mnum > len(boxes):
for obid in range(len(boxes), mnum):
marker = Marker()
marker.header.frame_id = 'livox_frame'
marker.header.stamp = rospy.Time.now()
marker.id = obid*2
marker.action = Marker.ADD
marker.type = Marker.LINE_LIST
marker.lifetime = rospy.Duration(0.01)
marker.color.r = 1
marker.color.g = 1
marker.color.b = 1
marker.color.a = 0
marker.scale.x = 0.2
marker.points = []
marker_array.markers.append(marker)
marker1 = Marker()
marker1.header.frame_id = 'livox_frame'
marker1.header.stamp = rospy.Time.now()
marker1.ns = "basic_shapes"
marker1.id = obid*2+1
marker1.action = Marker.ADD
marker1.type = Marker.TEXT_VIEW_FACING
marker1.lifetime = rospy.Duration(0.01)
marker1.color.a = 0
marker1.text = 'aaa'
marker_array_text.markers.append(marker1)
mnum = len(boxes)
self.marker_pub.publish(marker_array)
# self.pointcloud_pub.publish(pointcloud_msg)
self.marker_text_pub.publish(marker_array_text)
toc = time.time()
print('=========total_time(ms)', 1000*(toc-t0), '=============')
@jit(nopython=True)
def data2voxel(pclist):
# tic0 = time.time()
# data = [0 for i in range(HEIGHT*WIDTH*CHANNELS)]
data = np.zeros((HEIGHT, WIDTH, CHANNELS))
# pclist = list(pclist)
# pclist = np.asarray(pclist, dtype=np.float32)
# tic1 = time.time()
# print("vox time 1(ms): ", 1000 * (tic1 - tic0))
for line in pclist:
X = line[0]
Y = line[1]
if abs(X)<3 and abs(Y)<3:
continue
Z = line[2] - GROUND_FIX
if( Y > Y_MIN and Y < Y_MAX and
X > X_MIN and X < X_MAX and
Z > Z_MIN and Z < Z_MAX):
channel = int((-Z + Z_MAX)/DZ)
if (X > -overlap):
pixel_x = int((X - X_MIN + 2*overlap)/DX)
pixel_y = int((-Y + Y_MAX)/DY)
data[pixel_x, pixel_y, channel] = 1
if (X < overlap):
pixel_x = int((-X + overlap)/DX)
pixel_y = int((Y + Y_MAX)/DY)
# data[pixel_x*WIDTH*CHANNELS+pixel_y*CHANNELS+channel] = 1
data[pixel_x, pixel_y, channel] = 1
# tic2 = time.time()
# print("vox time 2(ms): ", 1000 * (tic2 - tic1))
# # voxel = np.reshape(data, (HEIGHT, WIDTH, CHANNELS))
# toc = time.time()
# print("vox time 3(ms): ", 1000 * (toc - tic2))
return data
if __name__ == '__main__':
livox = Detector()
rospy.spin()