-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.py
200 lines (167 loc) · 6.88 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import json, argparse, os, random
import pprint as pp
import numpy as np
import pandas as pd
from tqdm import tqdm
from sklearn import metrics, datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression, LinearRegression
from sklearn.linear_model import LogisticRegressionCV
from sklearn.preprocessing import PolynomialFeatures
from sklearn.metrics import accuracy_score, r2_score
from models.NNeighClassifier import NNeighClassifier
from models.BaseClassifier import BaseClassifier
from util import vis, dataIn
from util.helpers import playlistToSparseMatrixEntry, getPlaylistTracks, getTrackandArtist, obscurePlaylist
class SpotifyExplorer:
"""
Args:
numFiles (int): CLI variable that determines how many MPD files to read
retrainNNC (bool): determines whether to retrain NNC or read from file
Attributes:
NNC (NNeighClassifier): NNeighbor Classifier used for predictions
baseClassifier (BaseClassifier): Baseline classifier for comparison
playlists (DataFrame): contains all playlists read into memory
songs (DataFrame): all songs read into memory
playlistSparse (scipy.CSR matrix) playlists formatted for predictions
"""
def __init__(self, numFiles, retrainNNC=True):
self.readData(numFiles)
self.buildClassifiers(retrainNNC)
def buildClassifiers(self, retrainNNC):
"""
Init classifiers and set initial classifier as main
"""
self.NNC = self.buildNNC(retrainNNC)
self.baseClassifier = self.buildBaseClassifier()
self.classifier = self.NNC
def buildNNC(self, shouldRetrain):
"""
Init NNC classifier
"""
self.NNC = NNeighClassifier(
sparsePlaylists=self.playlistSparse,
songs=self.songs,
playlists=self.playlists,
reTrain=shouldRetrain)
return self.NNC
def buildBaseClassifier(self):
"""
Init base classifier
"""
self.baseClassifier = BaseClassifier(
songs=self.songs,
playlists=self.playlists)
return self.baseClassifier
def setClassifier(self, classifier="NNC"):
"""
Select classifier to set as main classifier
"""
if classifier == "NNC":
self.classifier = self.NNC
elif classifier == "Base":
self.classifier = self.baseClassifier
def readData(self, numFilesToProcess):
"""
Read song and playlist data
Either read from MPD data or pickled dataframe
"""
# don't have to write every time
if numFilesToProcess > 0:
# extract number from file
def sortFile(f):
f = f.split('.')[2].split('-')[0]
return int(f)
files = os.listdir("data/data")
files.sort(key=sortFile)
dataIn.createDFs(idx=0,
numFiles=numFilesToProcess,
path="data/data/",
files=files)
# Read data
print("Reading data")
self.playlists = pd.read_pickle("lib/playlists.pkl")
self.songs = pd.read_pickle("lib/tracks.pkl")
self.playlistSparse = pd.read_pickle("lib/playlistSparse.pkl")
print(f"Working with {len(self.playlists)} playlists " + \
f"and {len(self.songs)} songs")
def getRandomPlaylist(self):
return self.playlists.iloc[random.randint(0,len(self.playlists) - 1)]
def predictNeighbour(self, playlist, numPredictions, songs):
"""
Use currently selected predictor to predict neighborings songs
"""
return self.classifier.predict(playlist, numPredictions, songs)
def obscurePlaylist(self, playlist, obscurity):
"""
Obscure a portion of a playlist's songs for testing
"""
k = len(playlist['tracks']) * obscurity // 100
indices = random.sample(range(len(playlist['tracks'])), k)
obscured = [playlist['tracks'][i] for i in indices]
tracks = [i for i in playlist['tracks'] + obscured if i not in playlist['tracks'] or i not in obscured]
return tracks, obscured
def evalAccuracy(self, numPlaylists, percentToObscure=0.5):
"""
Obscures a percentage of songs
Iterates and sees how many reccomendations match the missing songs
"""
print()
print(f"Selecting {numPlaylists} playlists to test and obscuring {int(percentToObscure * 100)}% of songs")
def getAcc(pToObscure):
playlist = self.getRandomPlaylist()
keptTracks, obscured = obscurePlaylist(playlist, pToObscure)
playlistSub = playlist.copy()
obscured = set(obscured)
playlistSub['tracks'] = keptTracks
predictions = self.predictNeighbour(playlistSub,
500,
self.songs)
overlap = [value for value in predictions if value in obscured]
return len(overlap)/len(obscured)
accuracies = [getAcc(percentToObscure) for _ in tqdm(range(numPlaylists))]
avgAcc = round(sum(accuracies) / len(accuracies), 4) * 100
print(f"Using {self.classifier.name}, we predicted {avgAcc}% of obscured songs")
def displayRandomPrediction(self):
playlist = self.getRandomPlaylist()
while len(playlist["tracks"]) < 10:
playlist = self.getRandomPlaylist()
predictions = self.predictNeighbour(playlist=playlist,
numPredictions=50,
songs=self.songs)
playlistName = playlist["name"]
playlist = [getTrackandArtist(trackURI, self.songs) for trackURI in playlist["tracks"]]
predictions = [getTrackandArtist(trackURI, self.songs) for trackURI in predictions]
return {
"name": playlistName,
"playlist": playlist,
"predictions": predictions
}
def createRandomPredictionsDF(self, numInstances):
print(f"Generating {numInstances} data points")
data = [self.displayRandomPrediction() for _ in tqdm(range(numInstances))]
df = pd.DataFrame(data)
df.to_csv("predictionData.csv")
if __name__ == "__main__":
# Parse command line arguments
parser = argparse.ArgumentParser()
parser.add_argument('--parseData')
args = parser.parse_args()
if args.parseData:
numToParse = int(args.parseData)
else:
numToParse = 0
"""
Builds explorer
numFiles: Number of files to load (each with 1000 playlists)
parse: Boolean to load in data
"""
# Init class
spotify_explorer = SpotifyExplorer(numToParse)
#Run tests on NNC
spotify_explorer.evalAccuracy(30)
# # # Run tests on base
spotify_explorer.setClassifier("Base")
spotify_explorer.evalAccuracy(30)
# Generate prediction CSV
spotify_explorer.createRandomPredictionsDF(100)