-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPPCF.html
111 lines (85 loc) · 6.62 KB
/
PPCF.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="description" content="">
<meta name="author" content="">
<title>[ICWS'15] A Privacy-Preserving QoS Prediction Framework for Web Service Recommendation</title>
<!-- Bootstrap Core CSS -->
<link href="css/bootstrap.min.css" rel="stylesheet">
<!-- Custom CSS -->
<link href="css/clean-blog.min.css" rel="stylesheet">
<!-- Custom Fonts -->
<link href="http://maxcdn.bootstrapcdn.com/font-awesome/4.1.0/css/font-awesome.min.css" rel="stylesheet" type="text/css">
<link href="http://fonts.googleapis.com/css?family=Arimo:300,400,700,300italic,400italic,700italic" rel="stylesheet" type="text/css">
<link href='http://fonts.googleapis.com/css?family=PT+Sans' rel='stylesheet' type='text/css'>
<link href='http://fonts.googleapis.com/css?family=Lora:400,700,400italic,700italic' rel='stylesheet' type='text/css'>
<link href='http://fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800' rel='stylesheet' type='text/css'>
<!-- HTML5 Shim and Respond.js IE8 support of HTML5 elements and media queries -->
<!-- WARNING: Respond.js doesn't work if you view the page via file:// -->
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
<script src="https://oss.maxcdn.com/libs/respond.js/1.4.2/respond.min.js"></script>
<![endif]-->
</head>
<body>
<!-- Navigation -->
<nav id="mainNav" class="navbar navbar-default navbar-fixed-top">
<div class="container">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<a class="navbar-brand page-scroll" href="index.html">WS-DREAM</a>
</div>
</div>
<!-- /.container-fluid -->
</nav>
<!-- Page Header -->
<!-- Set your background image for this header on the line below. -->
<header class="intro-header">
<div class="container">
<div class="row">
<div class="col-lg-8 col-lg-offset-2 col-md-10 col-md-offset-1">
<div class="post-heading">
<h1>A Privacy-Preserving QoS Prediction Framework for Web Service Recommendation</h1>
<h2 class="subheading"></h2>
<span class="meta"><a href="http://jiemingzhu.github.io" target="_blank">Jieming Zhu</a>, <a href="https://www.cse.cuhk.edu.hk/~pjhe" target="_blank">Pinjia He</a>, <a href="https://wiki.cse.cuhk.edu.hk/user/zbzheng/" target="_blank">Zibin Zheng</a>, and <a href="http://www.cse.cuhk.edu.hk/lyu/" target="_blank">Michael R. Lyu</a><br><br>Department of Computer Science and Engineering<br>The Chinese University of Hong Kong</span>
</div>
</div>
</div>
</div>
</header>
<!-- Post Content -->
<article>
<div class="container">
<div class="row">
<div class="col-lg-8 col-lg-offset-2 col-md-10 col-md-offset-1">
<p>QoS-based Web service recommendation has recently gained much attention for providing a promising way to help users find high-quality services. To facilitate such recommendations, existing studies suggest the use of collaborative filtering techniques for personalized QoS prediction. These approaches, by leveraging partially observed QoS values from users, can achieve high accuracy of QoS predictions on the unobserved ones. However, the requirement to collect users' QoS data likely puts user privacy at risk, thus making them unwilling to contribute their usage data to a Web service recommender system. As a result, privacy becomes a critical challenge in developing practical Web service recommender systems. In this paper, we make the first attempt to cope with the privacy concerns for Web service recommendation. Specifically, we propose a simple yet effective privacy-preserving framework by applying data obfuscation techniques, and further develop two representative privacy-preserving QoS prediction approaches under this framework. Evaluation results from a publicly-available QoS dataset of real-world Web services demonstrate the feasibility and effectiveness of our privacy-preserving QoS prediction approaches. We believe our work can serve as a good starting point to inspire more research efforts on privacy-preserving Web service recommendation.</p>
<p>Read more from our paper: <br>
-------------------------------<br>
Jieming Zhu, Pinjia He, Zibin Zheng, and Michael R. Lyu, "<strong>A Privacy-Preserving QoS Prediction Framework for Web Service Recommendation</strong>," in <em>Proc. of IEEE International Conference on Web Services (<strong>ICWS</strong>)</em>, 2015.
[<a href="http://jiemingzhu.github.io/pub/jmzhu_icws2015.pdf" target="_blank">Paper</a>][<a href="http://jiemingzhu.github.io/pub/jmzhu_icws2015_sup.pdf" target="_blank">Supplemental report</a>][<a href="https://prezi.com/pb7tfghvbz9c/icws15slides-a-privacy-preserving-qos-prediction-framework-for-web-service-recommendation/" target="_blank">Slides</a>]</p>
<h2 class="section-heading">Dataset</h2>
<p>The data used in our work is a publicly-released a publicly-available QoS dataset of real-world Web services. The dataset was collected in August 2009, providing a total of 1,974,675 response time and throughput records of service invocations between 339 users and 5,825 Web services. It is available for downloading at:<br>
<a href="http://wsdream.github.io/dataset/wsrec_dataset1" target="_blank">http://wsdream.github.io/dataset</a></p>
<h2 class="section-heading">Code Release</h2>
<p>The source code of our implementations on P-UIPCC and P-PMF has been publicly released. You can view it on our GitHub repository.</p>
<a href="https://github.com/wsdream/PPCF" target="_blank" class="githubbutton">View code <br>on GitHub</a>
</div>
</div>
</div>
</article>
<hr>
<!-- Footer -->
<footer>
<div class="container">
<div class="row">
<div class="col-lg-8 col-lg-offset-2 col-md-10 col-md-offset-1">
<p class="copyright text-muted">Copyright © WS-DREAM 2016</p>
</div>
</div>
</div>
</footer>
</body>
</html>