-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
232 lines (201 loc) · 7.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Torch imports
import torch
from torch.utils.tensorboard import SummaryWriter
from tensorboard import program
from torch.utils.data import DataLoader
# Python imports
from tqdm import tqdm
import os
from os.path import join as ospj
import numpy as np
import random
from flags import parser
import csv
#Local imports
from model.common import Evaluator
from config_model import configure_model
from data import dataset as dset
from utils.utils import load_args, set_torch
best_attr = 0.0
best_obj = 0.0
best_seen = 0.0
best_unseen = 0.0
best_auc = 0.0
best_hm = 0.0
best_epoch = 0.0
os.environ["CUDA_VISIBLE_DEVICES"] = '0, 1'
def main():
# Get arguments and start logging
print('> Initialize parameters')
args = parser.parse_args()
args.dataset = 'mit-states' # Choose from ut-zap50k | mit-states | cgqa
args.main_root = os.path.dirname(__file__)
args.data_root = '/root/datasets/'
device = 0 # Your GPU order. If you use CPU, ignore this.
args.test_set = 'val'
set_torch(0)
config_path = ospj(args.main_root, 'configs', args.dataset, 'CANet.yml')
if os.path.exists(config_path):
load_args(config_path, args)
print(' Load parameter values from file {}'.format(config_path))
else:
print(' No yml file found. Keep default parameter values in flags.py')
# Choose device
if torch.cuda.is_available():
args.device = 'cuda:{}'.format(device)
else:
args.device = 'cpu'
print('> Choose device: {}'.format(args.device))
# Tensorboard
print('> Initialize tensorboard')
logpath = ospj(args.main_root, 'logs', args.dataset)
writer = SummaryWriter(log_dir=logpath, flush_secs=30)
os.makedirs(logpath, exist_ok=True)
tb = program.TensorBoard()
tb.configure(argv=[None, '--logdir', './logs'])
tb.launch()
# Get dataset
print('> Load dataset {}'.format(args.dataset))
trainset = dset.CompositionDataset(
args=args,
root=ospj(args.data_root, args.dataset),
phase='train',
split=args.splitname,
model =args.image_extractor,
update_image_features = args.update_image_features,
train_only= args.train_only,
)
testset = dset.CompositionDataset(
args=args,
root=ospj(args.data_root, args.dataset),
phase=args.test_set,
split=args.splitname,
model =args.image_extractor,
update_image_features = args.update_image_features,
)
# Get model and optimizer
args.train = True
image_extractor, model, optimizer = configure_model(args, trainset)
print(model)
# Dataloaders
print('> Initialize trainset and {}set dataloaders'.format(args.test_set))
trainloader = DataLoader(
trainset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers)
testloader = DataLoader(
testset,
batch_size=args.test_batch_size,
shuffle=False,
num_workers=args.num_workers)
# Train an epoch
train = train_normal
# Evaluate an epoch
print('> Initialize evaluator')
evaluator = Evaluator(testset, args)
for epoch in range(args.max_epochs):
print('Epoch {} | Best Attr: {:.2f}% | Best Obj: {:.2f}% | Best Seen: {:.2f}% | Best Unseen: {:.2f}% | Best HM: {:.2f}% | Best AUC: {:.2f} | Best Epoch: {:.0f}'.\
format(epoch+1, best_attr*100, best_obj*100, best_seen*100, best_unseen*100, best_hm*100, best_auc*100, best_epoch))
train(args, epoch, image_extractor, model, trainloader, optimizer, writer)
with torch.no_grad():
test(args, epoch, image_extractor, model, testloader, evaluator, logpath)
def train_normal(args, epoch, image_extractor, model, trainloader, optimizer, writer):
'''
Runs training for an epoch
'''
if args.update_image_features:
image_extractor.train()
model = model.train() # Let's switch to training
train_loss = 0.0
trainloader = tqdm(trainloader, desc='|--Training')
for idx, data in enumerate(trainloader):
data = [d.to(args.device) for d in data]
if args.update_image_features:
data[0] = image_extractor(data[0])
loss = model(data)[0]
trainloader.set_description(desc='|--Training | Batch Loss: {:.4f}'.format(loss.item()))
if loss == None:
trainloader.close()
return
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
trainloader.close()
train_loss = train_loss/len(trainloader)
print('|----Train Loss: {:.4f}'.format(train_loss))
writer.add_scalar('Loss/train_total', train_loss, epoch)
def test(args, epoch, image_extractor, model, testloader, evaluator, logpath):
'''
Runs testing for an epoch
'''
def save_checkpoint(filename):
state = {
'epoch': epoch+1,
'AUC': stats['AUC']
}
state['net'] = model.state_dict()
if image_extractor:
state['image_extractor'] = image_extractor.state_dict()
torch.save(state, ospj(args.main_root, 'logs', args.dataset, 'ckpt_{}_{}.t7'.format(filename, args.dataset)))
if args.update_image_features: image_extractor.eval()
model = model.eval()
all_attr_gt, all_obj_gt, all_pair_gt, all_pred = [], [], [], []
testloader = tqdm(testloader, desc='|--Testing')
for idx, data in enumerate(testloader):
data = [d.to(args.device) for d in data]
if args.update_image_features:
data[0] = image_extractor(data[0])
predictions = model(data)[1]
attr_truth, obj_truth, pair_truth = data[1], data[2], data[3]
all_pred.append(predictions)
all_attr_gt.append(attr_truth)
all_obj_gt.append(obj_truth)
all_pair_gt.append(pair_truth)
del predictions, attr_truth, obj_truth, pair_truth
testloader.close()
all_attr_gt, all_obj_gt, all_pair_gt = torch.cat(all_attr_gt).to('cpu'), torch.cat(all_obj_gt).to(
'cpu'), torch.cat(all_pair_gt).to('cpu')
global best_attr, best_obj, best_seen, best_unseen, best_auc, best_hm, best_epoch
# Gather values as dict of (attr, obj) as key and list of predictions as values
all_pred_dict = {}
for k in all_pred[0].keys():
all_pred_dict[k] = torch.cat([all_pred[i][k].cpu() for i in range(len(all_pred))])
del all_pred
# Calculate best unseen accuracy
results = evaluator.score_model(all_pred_dict, all_obj_gt, bias=args.bias, topk=args.topk)
stats = evaluator.evaluate_predictions(results, all_attr_gt, all_obj_gt, all_pair_gt, all_pred_dict, topk=args.topk)
stats['a_epoch'] = epoch
# print(result)
attr_acc = stats['closed_attr_match']
obj_acc = stats['closed_obj_match']
seen_acc = stats['best_seen']
unseen_acc = stats['best_unseen']
HM = stats['best_hm']
AUC = stats['AUC']
print('|----Test Finished: Attr Acc: {:.2f}% | Obj Acc: {:.2f}% | Seen Acc: {:.2f}% | Unseen Acc: {:.2f}% | HM: {:.2f}% | AUC: {:.2f}'.\
format(attr_acc*100, obj_acc*100, seen_acc*100, unseen_acc*100, HM*100, AUC*100))
if epoch > 0 and epoch % args.save_every == 0:
save_checkpoint(epoch)
if AUC > best_auc:
best_auc = AUC
best_attr = attr_acc
best_obj = obj_acc
best_seen = seen_acc
best_unseen = unseen_acc
best_hm = HM
best_epoch = epoch
print('|----New Best AUC {:.2f}. SAVE to local disk!'.format(best_auc*100))
save_checkpoint('best_auc')
# Logs
with open(ospj(logpath, 'logs.csv'), 'a') as f:
w = csv.DictWriter(f, stats.keys())
if epoch == 0:
w.writeheader()
w.writerow(stats)
if __name__ == '__main__':
print('======== Welcome! ========')
print('> Program start')
main()
print('> Program terminated')