-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathperformance.py
181 lines (149 loc) · 5.72 KB
/
performance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import argparse
import time
import traceback
import random
from collections import defaultdict
import numpy as np
import cv2
import matplotlib.pyplot as plt
from emosaic.utils.image import divide_image_rectangularly, to_vector, compute_hw
from emosaic.utils.indexing import index_images
from emosaic.utils.misc import is_running_jupyter
if is_running_jupyter():
from tqdm import tqdm_notebook as tqdm
else:
from tqdm import tqdm
"""
run performance.py \
--codebook-dir media/pics/ \
--min-scale 1 \
--max-scale 12
"""
# parse command line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--target", dest='target', type=str, required=True, help="Image to make mosaic from")
parser.add_argument("--codebook-dir", dest='codebook_dir', type=str, required=True, help="Source folder of images")
parser.add_argument("--min-scale", dest='min_scale', type=int, required=True, help="Start scale rendering here")
parser.add_argument("--max-scale", dest='max_scale', type=int, required=True, help="Continue rendering up until this scale")
args = parser.parse_args()
def mosaicify(
target_image,
tile_h, tile_w,
tile_index, tile_images,
verbose=0,
use_stabilization=False,
stabilization_threshold=0.95,
randomness=0.0,
):
try:
rect_starts = divide_image_rectangularly(target_image, h_pixels=tile_h, w_pixels=tile_w)
mosaic = np.zeros(target_image.shape)
if use_stabilization:
dist_shape = (target_image.shape[0], target_image.shape[1])
last_dist = np.zeros(dist_shape).astype(np.int32)
last_dist[:, :] = 2**31 - 1
timings = defaultdict(list)
start_mosiac = time.time()
if verbose:
print("We have %d tiles to assign" % len(rect_starts))
for (j, (x, y)) in enumerate(rect_starts):
starttime = time.time()
# get our target region & vectorize it
start_vectorize = time.time()
target = target_image[x : x + tile_h, y : y + tile_w]
target_h, target_w, _ = target.shape
v = to_vector(target, tile_h, tile_w)
timings['vectorize'].append(time.time() - start_vectorize)
# find nearest codebook image
start_lookup = time.time()
dist, I = tile_index.search(v, k=1)
idx = I[0][0]
timings['lookup'].append(time.time() - start_lookup)
closest_tile = tile_images[idx]
# write into mosaic
start_copy = time.time()
if random.random() < randomness:
# pick a random tile!
mosaic[x : x + tile_h, y : y + tile_w] = random.choice(tile_images)
else:
if use_stabilization:
if dist < last_dist[x, y] * stabilization_threshold:
mosaic[x : x + tile_h, y : y + tile_w] = closest_tile
else:
mosaic[x : x + tile_h, y : y + tile_w] = closest_tile
timings['copy'].append(time.time() - start_copy)
# set new last dist
if use_stabilization:
last_dist[x, y] = dist
# do unit
start_uint = time.time()
blah = mosaic[x : x + tile_h, y : y + tile_w].astype(np.uint8)
timings['uint'].append(time.time() - start_uint)
# record the performance
timings['loop'].append(time.time() - starttime)
timings['mosaic'].append(time.time() - start_mosiac)
for k in timings.keys():
timings[k] = np.array(timings[k])
return mosaic.astype(np.uint8), rect_starts, timings
except Exception:
print(traceback.format_exc())
import ipdb; ipdb.set_trace()
return None, None, None
# constants
height_aspect = 4
width_aspect = 3
target_image = cv2.imread(args.target)
# index
scale2index = {}
scales = range(args.min_scale, args.max_scale + 1, 1)
dimensions = []
global_timings = defaultdict(list)
num_tiles = []
for scale in scales:
print("Indexing scale=%d..." % scale)
h, w = compute_hw(scale, height_aspect, width_aspect)
tile_index, _, tile_images = index_images(
paths='%s/*.jpg' % args.codebook_dir,
aspect_ratio=height_aspect / float(width_aspect),
height=h, width=w,
caching=True,
)
scale2index[scale] = (tile_index, tile_images)
# then precompute the mosaic
h, w = compute_hw(scale, height_aspect, width_aspect)
dims = h * w * 3
# mosaic-ify & show it
_, rect_starts, timings = mosaicify(
target_image, h, w, tile_index, tile_images,
use_stabilization=True,
stabilization_threshold=0.95)
# print("Stats for scale=%d, dimensions=%d" % (scale, dims))
for k in timings.keys():
# print("stats for %s:" % k)
# print("mean=%.8f, stddev=%.8f" % (timings[k].mean(), timings[k].std()))
timings[k] = np.array(timings[k])
global_timings[k].append(timings[k].mean())
num_tiles.append(len(rect_starts))
dimensions.append(dims)
# plot some stuff
for k in global_timings.keys():
plt.clf()
means = np.array(global_timings[k])
if k == 'mosaic':
plt.plot(num_tiles, means)
plt.title('time per mosaic (secs) as function of num tiles')
plt.ylabel("mean time (sec) per mosaic")
plt.xlabel("num tiles")
else:
plt.plot(dimensions, means * 1000, label=k)
plt.title(k)
plt.ylabel("mean time (ms) per operation")
plt.xlabel("tile image dimensions")
plt.show()
# tiles vs scale
plt.clf()
plt.plot(scales, num_tiles)
plt.title('num tiles as function of scale')
plt.ylabel("num tiles")
plt.xlabel("scale")
plt.show()