-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpaper-bibs.bib
331 lines (233 loc) · 20.4 KB
/
paper-bibs.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
@article{Cha2023OnOTT,
title={On the Temperature of Bayesian Graph Neural Networks for Conformal Prediction},
author={Seohyeon Cha and Honggu Kang and Joonhyuk Kang},
year={2023},
url={https://www.semanticscholar.org/paper/cf33f7c8a9eaa5b1a661f71634a4481e8a74b7cb},
journal={arXiv.org},
}
@article{Zhao2020UncertaintyUAS,
title={Uncertainty Aware Semi-Supervised Learning on Graph Data},
author={Xujiang Zhao and Feng Chen and Shu Hu and Jin-Hee Cho},
year={2020},
url={https://www.semanticscholar.org/paper/898178fa298635099da4ce5411564d837998b018},
journal={Neural Information Processing Systems},
}
@inproceedings{Kong2024UnknownAwareUGR,
title={Unknown-Aware Graph Regularization for Robust Semi-supervised Learning from Uncurated Data},
author={Heejo Kong and Suneung Kim and Ho-Joong Kim and Seong-Whan Lee},
year={2024},
url={https://www.semanticscholar.org/paper/b82ea48f183d1708229ead6ea820b55f4b3ef8e5},
booktitle={AAAI Conference on Artificial Intelligence},
}
@article{Stadler2021GraphGPN,
title={Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification},
author={Maximilian Stadler and Bertrand Charpentier and Simon Geisler and Daniel Zugner and Stephan Gunnemann},
year={2021},
url={https://www.semanticscholar.org/paper/66ee16c1a274f1c9205b0ef4fbda0b4a8a481f81},
journal={Neural Information Processing Systems},
}
@inproceedings{Lin2024GraphGNS,
title={Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification},
author={Xixun Lin and Wenxiao Zhang and Fengzhao Shi and Chuan Zhou and Lixin Zou and Xiangyu Zhao and Dawei Yin and Shirui Pan and Yanan Cao},
year={2024},
url={https://www.semanticscholar.org/paper/6fd85ef91f8392d4cbe923713d93a41e3ceabe1f},
booktitle={International Conference on Machine Learning},
}
@inproceedings{Guo2017OnOCO,
title={On Calibration of Modern Neural Networks},
author={Chuan Guo and Geoff Pleiss and Yu Sun and Kilian Q. Weinberger},
year={2017},
url={https://www.semanticscholar.org/paper/d65ce2b8300541414bfe51d03906fca72e93523c},
booktitle={International Conference on Machine Learning},
}
@article{Minderer2021RevisitingRTC,
title={Revisiting the Calibration of Modern Neural Networks},
author={Matthias Minderer and Josip Djolonga and Rob Romijnders and F. Hubis and Xiaohua Zhai and N. Houlsby and Dustin Tran and Mario Lucic},
year={2021},
url={https://www.semanticscholar.org/paper/e757488d2e8684e3da7b14fbb000b7e4a0bab001},
journal={Neural Information Processing Systems},
}
@article{Liang2017EnhancingETR,
title={Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks},
author={Shiyu Liang and Yixuan Li and R. Srikant},
year={2017},
url={https://www.semanticscholar.org/paper/547c854985629cfa9404a5ba8ca29367b5f8c25f},
journal={International Conference on Learning Representations},
}
@article{Csizi2024EuclidEPD,
title={Euclid preparation. Deep learning true galaxy morphologies for weak lensing shear bias calibration},
author={Euclid Collaboration B. Csizi and T. Schrabback and S. Grandis and H. Hoekstra and H. Jansen and L. Linke and G. Congedo and A. Taylor and A. Amara and S. Andreon and C. Baccigalupi and M. Baldi and S. Bardelli and P. Battaglia and R. Bender and C. Bodendorf and D. Bonino and E. Branchini and M. Brescia and J. Brinchmann and S. Camera and V. Capobianco and C. Carbone and J. Carretero and S. Casas and F. Castander and M. Castellano and G. Castignani and S. Cavuoti and A. Cimatti and C. Colodro-Conde and C. Conselice and L. Conversi and Y. Copin and F. Courbin and H. Courtois and M. Cropper and A. D. Silva and H. Degaudenzi and G. Lucia and J. Dinis and M. Douspis and F. Dubath and X. Dupac and S. Dusini and M. Farina and S. Farrens and F. Faustini and S. Ferriol and S. Fotopoulou and M. Frailis and E. Franceschi and S. Galeotta and B. Gillis and C. Giocoli and A. Grazian and F. Grupp and L. Guzzo and S. Haugan and W. Holmes and I. Hook and F. Hormuth and A. Hornstrup and P. Hudelot and S. Ili'c and K. Jahnke and M. Jhabvala and B. Joachimi and E. Keihanen and S. Kermiche and A. Kiessling and M. Kilbinger and B. Kubik and K. Kuijken and M. Kummel and M. Kunz and H. Kurki-Suonio and S. Ligori and P. Lilje and V. Lindholm and I. Lloro and D. Maino and E. Maiorano and O. Mansutti and S. Marcin and O. Marggraf and K. Markovič and M. Martinelli and N. Martinet and F. Marulli and R. Massey and E. Medinaceli and S. Mei and M. Melchior and Y. Mellier and M. Meneghetti and G. Meylan and Michele Moresco and L. Moscardini and S. Niemi and C. Padilla and S. Paltani and F. Pasian and K. Pedersen and V. Pettorino and S. Pires and G. Polenta and M. Poncet and L. Popa and F. Raison and A. Renzi and J. Rhodes and G. Riccio and E. Romelli and M. Roncarelli and E. Rossetti and R. Saglia and Z. Sakr and A. S'anchez and B. Sartoris and P. Schneider and A. Secroun and G. Seidel and S. Serrano and C. Sirignano and G. Sirri and L. Stanco and J. Steinwagner and P. Tallada-Cresp'i and D. Tavagnacco and H. Teplitz and I. Tereno and R. Toledo-Moreo and F. Torradeflot and I. Tutusaus and E. Valentijn and L. Valenziano and T. Vassallo and G. Kleijn and A. Veropalumbo and Y. Wang and J. Weller and G. Zamorani and E. Zucca and A. Biviano and M. Bolzonella and E. Bozzo and C. Burigana and M. Calabrese and D. Ferdinando and J. Vigo and R. Farinelli and J. Graciá-Carpio and S. Matthew and N. Mauri and A. Pezzotta and M. Pontinen and V. Scottez and M. Tenti and M. Viel and M. Wiesmann and Y. Akrami and V. Allevato and S. Anselmi and M. Archidiacono and F. Atrio-Barandela and M. Ballardini and A. Blanchard and L. Blot and S. Borgani and S. Bruton and R. Cabanac and A. Calabrò and G. Cañas-Herrera and A. Cappi and F. Caro and C. Carvalho and T. Castro and K. Chambers and S. Contarini and A. Cooray and G. Desprez and A. D'iaz-S'anchez and J. Diaz and S. Domizio and H. Dole and S. Escoffier and A. G. Ferrari and P. G. Ferreira and I. Ferrero and A. Finoguenov and A. Fontana and F. Fornari and L. Gabarra and K. Ganga and J. Garc'ia-Bellido and T. Gasparetto and E. Gaztañaga and F. Giacomini and F. Gianotti and G. Gozaliasl and C. M. Gutierrez and A. Hall and H. Hildebrandt and J. Hjorth and A. J. Muñoz and S. Joudaki and J. Kajava and Vanshika Kansal and D. Karagiannis and C. Kirkpatrick and A. Brun and J. L. Graet and L. Legrand and J. Lesgourgues and T. Liaudat and A. Loureiro and J. Macias-Perez and G. Maggio and M. Magliocchetti and C. Mancini and F. Mannucci and R. Maoli and J. Mart'in-Fleitas and C. Martins and L. Maurin and R. B. Metcalf and M. Miluzio and P. Monaco and A. Montoro and A. Mora and C. Moretti and G. Morgante and N. A. Walton and L. Pagano and L. Patrizii and V. Popa and D. Potter and I. Risso and P. Rocci and M. Sahl'en and E. Sarpa and A. Schneider and M. Sereno and P. Simon and A. Mancini and J. Stadel and K. Tanidis and C. Tao and N. Tessore and G. Testera and R. Teyssier and S. Toft and S. Tosi and A. Troja and M. Tucci and C. Valieri and J. Valiviita and D. Vergani and G. Verza and P. U. Innsbruck and Institut fur Teilchenphysik and Technikerstr. 258 and 6020 Innsbruck and Austria and L. Observatory and Leiden University and 55 Einsteinweg and 2333 CC Leiden and The Netherlands and I. F. Astronomy and U. Edinburgh and R. Observatory and B. Hill and Edinburgh EH9 3HJ and Uk and S. O. Mathematics and Physics and University of Surrey and Guildford and Surrey and GU2 7XH and I. Brera and 28 ViaBrera and 20133 Milano and Italy and Ifpu and Institute for Fundamental Physics of the Universe and 2. viaBeirut and 34127 Trieste and Inaf Trieste and 11 ViaG.B.Tiepolo and 34127 Trieste and Infn and Sezione di Trieste and 2. ViaValerio and TS 34127Trieste and Sissa and International School for Advanced Studies and Via Bonomea 265 and TS 34136Trieste and D. Astronomia and U. Bologna and V. G. 932 and 40129 Bologna and I. A. D. Bologna and V. G. 933 and I. Bologna and 62 vialeBertiPichat and 40129 Bologna and M. F. Physics and 1. Giessenbachstr. and 85748 Garching and Germany and Universitatssternwarte Munchen and F. Physik and Ludwig-Maximilians-Universitat Munchen and 1. Scheinerstrasse and 8. Munchen and I. Torino and 20 viaOsservatorio and 1. P. Torinese and D. Fisica and U. Genova and 33 viaDodecaneso and 16146 and Genova and I. Genova and Department of PhysicsE. Pancini and U. Federico and 6. ViaCinthia and 80126 and Napoli and I. -. Capodimonte and 16 viaMoiariello and 80131 Napoli and I. Naples and I. D. A. E. C. D. Espacco and U. Porto and Caup and Rua das Estrelas and P. Porto and Portugal and F. Porto and Rua do Campo Alegre and 4169-007 Porto and U. Torino and 1. ViaP.Giuria and 10125 Torino and I. Torino and Inaf-Iasf Milano and 12 ViaAlfonsoCorti and 20133 Milano and Centro de Investigaciones Energ'eticas and Medioambientales y Tecnol'ogicas and 40 AvenidaComplutense and 28014 Madrid and Spain. and Port d'Informaci'o Cient'ifica and Campus Uab and C. Sn and 08193 Bellaterra and Institute for Solar Physics and Cosmology and R. University and 52056 Aachen and Institute of Space Sciences and Carrer de Can Magrans and sn. and 08193 Barcelona and Institut d'Estudis Espacials de de Catalunya and Edifici Rdit and C. Upc and 08860 Castelldefels and Barcelona and Inafiasf Roma and 33 viaFrascati and 00078 Monte Porzio Catone and D. Bologna and Instituto de Astrof'isica de Canarias and C. V. L. sn and 38204 and San Crist'obal de La Laguna and Tenerife and J. B. C. F. Astrophysics and Department of Astronomy Physics and Astronomy and U. Manchester and Oxford Road and M13 9PL and European Space AgencyESRIN and 1. LargoGalileoGalilei and 00044 Frascati and Roma and Esacesa and Camino Bajo de Castillo and sn. and Urb. Villafranca del Castillo and 28692 Villanueva de la Canada and Madrid and 1. Universit'eClaudeBernardLyon and CNRSIN2p3 and I. Lyon and Umr 5822 and Villeurbanne and F-69100 and France and I. O. Physics and L. O. Astrophysics and E. P. F. Lausanne and Observatoire de Sauverny and 1290 Versoix and Switzerland and Institut de Ci'encies del Cosmos and U. Barcelona and 1. Mart'iiFranques and 08193 Barcelona and I. C. D. R. I. E. Avanccats and 23 PasseigdeLlu'isCompanys and 08193 Barcelona and 1. UCBLyon and Iuf and 4. R. E. Fermi and 69622 Villeurbanne and Mullard Space Science Laboratory and U. London and H. Mary and Dorking and Surrey RH5 6NT and D. D. F'isica and F. Ciencias and Universidade de Lisboa and C8 Edif'icio and C. Grande and P. Lisboa and 1049-001 Lisboa and D. O. Astronomy and U. Geneva and 16 ch.d'Ecogia and Universit'e Paris-Saclay and Cnrs and I. D. Spatiale and 91405 and Orsay and INFN-Padova and 8. viaMarzolo and 35131 Padova and I. D. A. E. P. Spaziali and V. Cavaliere and 100 and 00133 Roma and Universit'e de Paris Cit'e and Cea and Aim and 91191 and Gif-sur-Yvette and S. Center and Italian Space Agency and via del Politecnico snc and 00133 Roma and S. O. Physics and H. P. Laboratory and U. Bristol and Tyndall Avenue and Bristol and BS8 1TL and Istituto Nazionale Fisica Nucleare and Sezione Infn di Bologna and 46 ViaIrnerio and 40129 Bologna and I. Padova and 5. Viadell'Osservatorio and 35131 Padova and Dipartimento di FisicaAldo Pontremoli and U. D. S. D. Milano and 16 viaCeloria and Institute of Theoretical Astrophysics and U. Oslo and P. O. B. 1. Blindern and 0315 Oslo and Norway and Jet propulsion Laboratory and C. I. O. Technology. and 4800 Oak Grove Drive and Pasadena and Ca and 91109 and USA. and L. University and Lancaster and LA1 4YB and Felix Hormuth Engineering and 17 Goethestr. and 69181 Leimen and T. Denmark and Elektrovej 327 and 2800 Kgs. Lyngby and Denmark and Cosmic Dawn Center and I. Paris},
year={2024},
url={https://www.semanticscholar.org/paper/e8a7d68f31c4731f1df117d0ea08833dfc68a256},
journal={},
}
@article{Sensoy2018EvidentialEDL,
title={Evidential Deep Learning to Quantify Classification Uncertainty},
author={M. Sensoy and M. Kandemir and Lance M. Kaplan},
year={2018},
url={https://www.semanticscholar.org/paper/138fafc2d679bc6446ff74f55dfd316b0d5674b9},
journal={Neural Information Processing Systems},
}
@article{Li2024HyperHED,
title={Hyper Evidential Deep Learning to Quantify Composite Classification Uncertainty},
author={Changbin Li and Kangshuo Li and Yuzhe Ou and Lance M. Kaplan and A. Jøsang and Jin-Hee Cho and Dong Hyun. Jeong and Feng Chen},
year={2024},
url={https://www.semanticscholar.org/paper/fe9e834462ce8fa399af1287d53b6e9236fbe326},
journal={International Conference on Learning Representations},
}
@article{Blundell2015WeightWUI,
title={Weight Uncertainty in Neural Networks},
author={C. Blundell and Julien Cornebise and K. Kavukcuoglu and D. Wierstra},
year={2015},
url={https://www.semanticscholar.org/paper/da6057368920585bcf2443295b98418840f1fc80},
journal={arXiv.org},
}
@article{Pawlowski2017ImplicitIWU,
title={Implicit Weight Uncertainty in Neural Networks},
author={Nick Pawlowski and Martin Rajchl and Ben Glocker},
year={2017},
url={https://www.semanticscholar.org/paper/fb0e61cb9cae05a4380445c63f55928266796282},
journal={arXiv.org},
}
@article{Ovadia2019CanCYT,
title={Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift},
author={Yaniv Ovadia and Emily Fertig and Jie Jessie Ren and Zachary Nado and D. Sculley and Sebastian Nowozin and Joshua V. Dillon and Balaji Lakshminarayanan and Jasper Snoek},
year={2019},
url={https://www.semanticscholar.org/paper/1eb7f46b1a0a7df823194d86543e5554aa21021a},
journal={Neural Information Processing Systems},
}
@article{Fayjie2024PredictivePUE,
title={Predictive uncertainty estimation in deep learning for lung carcinoma classification in digital pathology under real dataset shifts},
author={A. Fayjie and Jutika Borah and F. Carbone and Jan Tack and Patrick Vandewalle},
year={2024},
url={https://www.semanticscholar.org/paper/9654d1b2457a41db446e4f79a8f35e17047c31d7},
journal={arXiv.org},
}
@article{Ashukha2020PitfallsPOI,
title={Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning},
author={Arsenii Ashukha and Alexander Lyzhov and Dmitry Molchanov and D. Vetrov},
year={2020},
url={https://www.semanticscholar.org/paper/d12fd94337ac804470dc78911e74b5b6480eef8e},
journal={International Conference on Learning Representations},
}
@article{Wilson2020BayesianBDL,
title={Bayesian Deep Learning and a Probabilistic Perspective of Generalization},
author={A. Wilson and Pavel Izmailov},
year={2020},
url={https://www.semanticscholar.org/paper/af9280741ef627f0d6c8437605d002d3bfc2d1b1},
journal={Neural Information Processing Systems},
}
@article{Gelman2016AttitudesATA,
title={Attitudes toward amalgamating evidence in statistics},
author={A. Gelman and K. O'rourke},
year={2016},
url={https://www.semanticscholar.org/paper/aad6159abd9865715009c3d47f9ed3c2a60e4d22},
journal={},
}
@inproceedings{Gal2015DropoutDAA,
title={Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning},
author={Y. Gal and Zoubin Ghahramani},
year={2015},
url={https://www.semanticscholar.org/paper/f35de4f9b1a7c4d3fa96a0d2ab1bf8937671f6b6},
booktitle={International Conference on Machine Learning},
}
@article{Knoblauch2022AnAOV,
title={An Optimization-centric View on Bayes' Rule: Reviewing and Generalizing Variational Inference},
author={Jeremias Knoblauch and Jack Jewson and T. Damoulas},
year={2022},
url={https://www.semanticscholar.org/paper/1f6d82f06f77cc91705f7be5fc656e523a517da5},
journal={Journal of machine learning research},
}
@article{Hinton2015DistillingDTK,
title={Distilling the Knowledge in a Neural Network},
author={Geoffrey E. Hinton and O. Vinyals and J. Dean},
year={2015},
url={https://www.semanticscholar.org/paper/0c908739fbff75f03469d13d4a1a07de3414ee19},
journal={arXiv.org},
}
@article{Lin2020AnAEF,
title={An efficient framework for counting pedestrians crossing a line using low-cost devices: the benefits of distilling the knowledge in a neural network},
author={Yih-Kai Lin and Chu-Fu Wang and Ching-Yu Chang and Hao Sun},
year={2020},
url={https://www.semanticscholar.org/paper/1d194274f2db9fc43adc1b93f31ff2800c9c8db6},
journal={Multimedia tools and applications},
}
@inproceedings{Lakshminarayanan2016SimpleSAS,
title={Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles},
author={Balaji Lakshminarayanan and A. Pritzel and C. Blundell},
year={2016},
url={https://www.semanticscholar.org/paper/802168a81571dde28f5ddb94d84677bc007afa7b},
booktitle={Neural Information Processing Systems},
}
@inproceedings{wenzel2020good,
title={How Good is the Bayes Posterior in Deep Neural Networks Really?},
author={Wenzel, Florian and Roth, Kevin and Veeling, Bastiaan and Swiatkowski, Jakub and Tran, Linh and Mandt, Stephan and Snoek, Jasper and Salimans, Tim and Jenatton, Rodolphe and Nowozin, Sebastian},
booktitle={International Conference on Machine Learning},
pages={10248--10259},
year={2020},
organization={PMLR}
}
@article{Hinton2015DistillingDTK,
title={Distilling the Knowledge in a Neural Network},
author={Geoffrey E. Hinton and O. Vinyals and J. Dean},
year={2015},
url={https://www.semanticscholar.org/paper/0c908739fbff75f03469d13d4a1a07de3414ee19},
journal={arXiv.org},
}
@article{Lin2020AnAEF,
title={An efficient framework for counting pedestrians crossing a line using low-cost devices: the benefits of distilling the knowledge in a neural network},
author={Yih-Kai Lin and Chu-Fu Wang and Ching-Yu Chang and Hao Sun},
year={2020},
url={https://www.semanticscholar.org/paper/1d194274f2db9fc43adc1b93f31ff2800c9c8db6},
journal={Multimedia tools and applications},
}
@inproceedings{Lakshminarayanan2016SimpleSAS,
title={Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles},
author={Balaji Lakshminarayanan and A. Pritzel and C. Blundell},
year={2016},
url={https://www.semanticscholar.org/paper/802168a81571dde28f5ddb94d84677bc007afa7b},
booktitle={Neural Information Processing Systems},
}
@inproceedings{wenzel2020good,
title={How Good is the Bayes Posterior in Deep Neural Networks Really?},
author={Wenzel, Florian and Roth, Kevin and Veeling, Bastiaan and Swiatkowski, Jakub and Tran, Linh and Mandt, Stephan and Snoek, Jasper and Salimans, Tim and Jenatton, Rodolphe and Nowozin, Sebastian},
booktitle={International Conference on Machine Learning},
pages={10248--10259},
year={2020},
organization={PMLR}
}
@article{Liu2021AABF,
title={A Bayesian Federated Learning Framework With Online Laplace Approximation},
author={Liang Liu and Xi Jiang and Feng Zheng and Hong Chen and Guo-Jun Qi and Heng Huang and Ling Shao},
year={2021},
url={https://www.semanticscholar.org/paper/d7b055c6eb3c0f4decb29f14e4c4f52c50501d1f},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
}
@article{Al-Shedivat2020FederatedFLV,
title={Federated Learning via Posterior Averaging: A New Perspective and Practical Algorithms},
author={Maruan Al-Shedivat and Jennifer Gillenwater and E. Xing and Afshin Rostamizadeh},
year={2020},
url={https://www.semanticscholar.org/paper/59477007095a68ba551a588df756fb9873a14b72},
journal={International Conference on Learning Representations},
}
@article{Ritter2018AASL,
title={A Scalable Laplace Approximation for Neural Networks},
author={H. Ritter and Aleksandar Botev and D. Barber},
year={2018},
url={https://www.semanticscholar.org/paper/ad8631abf269d2b886614f69221d25a732a7f58d},
journal={International Conference on Learning Representations},
}
@article{Antorán2024ScalableSBI,
title={Scalable Bayesian Inference in the Era of Deep Learning: From Gaussian Processes to Deep Neural Networks},
author={Javier Antorán},
year={2024},
url={https://www.semanticscholar.org/paper/c4d23a3eb3225dbc9a0c7e943353aa657913497b},
journal={arXiv.org},
}
@article{Liu2023FedLPAFOF,
title={FedLPA: One-shot Federated Learning with Layer-Wise Posterior Aggregation},
author={Xiang Liu and Liangxi Liu and Feiyang Ye and Yunheng Shen and Xia Li and Linshan Jiang and Jialin Li},
year={2024},
url={https://www.semanticscholar.org/paper/2e0ffd2cd3d70898f48d4a059095ff117452c849},
journal={Neural Information Processing Systems},
}