-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
executable file
·7255 lines (6662 loc) · 389 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<!--[if IEMobile 7 ]><html class="no-js iem7"><![endif]-->
<!--[if lt IE 9]><html class="no-js lte-ie8"><![endif]-->
<!--[if (gt IE 8)|(gt IEMobile 7)|!(IEMobile)|!(IE)]><!--><html class="no-js" lang="en"><!--<![endif]-->
<head>
<meta charset="utf-8">
<title>Winse Blog</title>
<meta name="author" content="Winse Liu">
<meta name="description" content="看 Yi官方文档,一开始摸不着头脑,不知道从哪里入手。 网上找了一些资料,查到了苏洋的博客,先把环境搭建起来。 基于 Docker 的深度学习环境:Windows
使用 Docker 快速上手 Stability AI 的 SDXL 1.0 正式版-Linux 为了在 Windows11 …">
<!-- http://t.co/dKP3o1e -->
<meta name="HandheldFriendly" content="True">
<meta name="MobileOptimized" content="320">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="canonical" href="http://winse.github.io">
<link href="/favicon.png" rel="icon">
<link href="/stylesheets/screen.css" media="screen, projection" rel="stylesheet" type="text/css">
<link href="//maxcdn.bootstrapcdn.com/font-awesome/4.1.0/css/font-awesome.min.css" rel="stylesheet">
<link href="/atom.xml" rel="alternate" title="Winse Blog" type="application/atom+xml">
<script src="/javascripts/modernizr-2.0.js"></script>
<script src="//cdn.bootcss.com/jquery/1.9.1/jquery.min.js"></script>
<script>!window.jQuery && document.write(unescape('%3Cscript src="/javascripts/libs/jquery.min.js"%3E%3C/script%3E'))</script>
<script src="/javascripts/libs/jquery.toc.min.js" type="text/javascript"></script>
<script src="/javascripts/octopress.js" type="text/javascript"></script>
<!--Fonts from Google"s Web font directory at http://google.com/webfonts -->
<!--
<link href="//fonts.googleapis.com/css?family=PT+Serif:regular,italic,bold,bolditalic" rel="stylesheet" type="text/css">
<link href="//fonts.googleapis.com/css?family=PT+Sans:regular,italic,bold,bolditalic" rel="stylesheet" type="text/css">
-->
<script src="/javascripts/generate-toc.js" type="text/javascript"></script>
<!-- Google tag (gtag.js) -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-D3G1YVNBK4"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-D3G1YVNBK4');
</script>
</head>
<body >
<header role="banner"><hgroup>
<h1><a href="/">Winse Blog</a></h1>
<h2>走走停停都是风景, 熙熙攘攘都向最好, 忙忙碌碌都为明朝, 何畏之.</h2>
</hgroup>
</header>
<nav role="navigation"><ul class="subscription" data-subscription="rss">
<li><a href="/atom.xml" rel="subscribe-rss" title="subscribe via RSS">RSS</a></li>
</ul>
<form action="https://www.google.com/search" method="get">
<fieldset role="search">
<input type="hidden" name="q" value="site:winse.github.io" />
<input class="search" type="text" name="q" results="0" placeholder="站内搜索"/>
</fieldset>
</form>
<ul class="main-navigation">
<li><a href="/">Blog</a></li>
<li><a href="/blog/archives/">Archives</a></li>
<li><a href="/blog/archives/updated.html">Updated</a></li>
<li><a href="/tool/">Tools</a></li>
</ul>
</nav>
<div id="main">
<div id="content">
<div class="blog-index">
<article>
<header>
<h1 class="entry-title"><a href="/blog/2024/01/15/aigc-setup-on-windows-wsl-2/">AIGC Setup on Win11 WSL2</a></h1>
<p class="meta">
<time datetime="2024-01-15T01:25:22+08:00" pubdate data-updated="true">Mon 2024-01-15 01:25</time>
</p>
</header>
<div class="entry-content"><p>看 <a href="https://github.com/01-ai/Yi">Yi</a>官方文档,一开始摸不着头脑,不知道从哪里入手。 网上找了一些资料,查到了苏洋的博客,先把环境搭建起来。</p>
<ul>
<li><a href="https://soulteary.com/2023/07/29/docker-based-deep-learning-environment-under-windows.html">基于 Docker 的深度学习环境:Windows</a></li>
<li><a href="https://soulteary.com/2023/07/29/get-started-with-stability-ai-sdxl-1-0-release-using-docker.html">使用 Docker 快速上手 Stability AI 的 SDXL 1.0 正式版-Linux</a></li>
</ul>
<p>为了在 Windows11 机器方便使用GPU,以及开源很多工程都提供docker入门,但WSL2慢,考虑本地已经搞了一个WSL1了会不会冲突,同时虚拟机里面也安装不了WSL2,VMWare桌面虚拟机的话直接使用GPU没有很好的方式等等,纠结了一天,最终还是选了安装 WSL2+Docker Desktop。</p>
<p>跟着文章,你将会了解Windows+WLS2+Docker怎么跑GPU模型,以及在国内怎么下载模型文件。</p>
<h2>使用WSL2</h2>
<p>在 启用或关闭Windows功能 中选择 虚拟机平台。</p>
<figure class='code'><div class="highlight"><table><tr><td class="gutter"><pre class="line-numbers"><span class='line-number'>1</span>
<span class='line-number'>2</span>
</pre></td><td class='code'><pre><code class=''><span class='line'>wsl --update
</span><span class='line'>wsl --set-default-version 2</span></code></pre></td></tr></table></div></figure>
<p>然后在微软商店Microsoft Store里面安装 <strong>Ubuntu-20.04</strong> (版本选20或者22)的系统(通过应用商店的话就规避了可能安装同一个的Linux的问题:已经安装 在应用商店的按钮不是[获取]是[打开])。</p>
<figure class='code'><div class="highlight"><table><tr><td class="gutter"><pre class="line-numbers"><span class='line-number'>1</span>
<span class='line-number'>2</span>
<span class='line-number'>3</span>
<span class='line-number'>4</span>
<span class='line-number'>5</span>
<span class='line-number'>6</span>
<span class='line-number'>7</span>
<span class='line-number'>8</span>
<span class='line-number'>9</span>
<span class='line-number'>10</span>
<span class='line-number'>11</span>
<span class='line-number'>12</span>
<span class='line-number'>13</span>
<span class='line-number'>14</span>
<span class='line-number'>15</span>
<span class='line-number'>16</span>
</pre></td><td class='code'><pre><code class=''><span class='line'>winse@DESKTOP-BR4MG38:~$ cat /etc/os-release
</span><span class='line'>NAME="Ubuntu"
</span><span class='line'>VERSION="20.04.6 LTS (Focal Fossa)"
</span><span class='line'>ID=ubuntu
</span><span class='line'>ID_LIKE=debian
</span><span class='line'>PRETTY_NAME="Ubuntu 20.04.6 LTS"
</span><span class='line'>VERSION_ID="20.04"
</span><span class='line'>HOME_URL="https://www.ubuntu.com/"
</span><span class='line'>SUPPORT_URL="https://help.ubuntu.com/"
</span><span class='line'>BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
</span><span class='line'>PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"
</span><span class='line'>VERSION_CODENAME=focal
</span><span class='line'>UBUNTU_CODENAME=focal
</span><span class='line'>
</span><span class='line'>winse@DESKTOP-BR4MG38:~$ uname -a
</span><span class='line'>Linux DESKTOP-BR4MG38 5.15.133.1-microsoft-standard-WSL2 #1 SMP Thu Oct 5 21:02:42 UTC 2023 x86_64 x86_64 x86_64 GNU/Linux</span></code></pre></td></tr></table></div></figure>
<p>对比WSL1,WSL2的 <code>ip a</code> ,WSL2还是干净很多,把宿主机的一些信息合并到linux里面了(如:hosts)。</p>
<h2>Docker Desktop + WSL2</h2>
<ul>
<li><p><a href="https://docs.docker.com/desktop/install/windows-install/">https://docs.docker.com/desktop/install/windows-install/</a></p></li>
<li><p>微软的安装内容讲的差不多,增加了使用vscode的内容
<a href="https://learn.microsoft.com/en-us/windows/wsl/tutorials/wsl-containers#develop-in-remote-containers-using-vs-code">https://learn.microsoft.com/en-us/windows/wsl/tutorials/wsl-containers#develop-in-remote-containers-using-vs-code</a></p></li>
</ul>
<p>通过exe安装,安装过程中选择使用WSL2,装好后wsl显示多出了两个linux。</p>
<figure class='code'><div class="highlight"><table><tr><td class="gutter"><pre class="line-numbers"><span class='line-number'>1</span>
<span class='line-number'>2</span>
<span class='line-number'>3</span>
<span class='line-number'>4</span>
<span class='line-number'>5</span>
<span class='line-number'>6</span>
</pre></td><td class='code'><pre><code class=''><span class='line'>C:\Users\P15>wsl -l -v
</span><span class='line'> NAME STATE VERSION
</span><span class='line'>* Ubuntu Stopped 1
</span><span class='line'> Ubuntu-20.04 Running 2
</span><span class='line'> docker-desktop-data Running 2
</span><span class='line'> docker-desktop Running 2</span></code></pre></td></tr></table></div></figure>
<figure class='code'><div class="highlight"><table><tr><td class="gutter"><pre class="line-numbers"><span class='line-number'>1</span>
<span class='line-number'>2</span>
<span class='line-number'>3</span>
<span class='line-number'>4</span>
</pre></td><td class='code'><pre><code class=''><span class='line'>winse@DESKTOP-BR4MG38:~$ su -
</span><span class='line'>root@DESKTOP-BR4MG38:~# echo "winse ALL=(ALL:ALL) NOPASSWD: ALL" >>/etc/sudoers
</span><span class='line'>
</span><span class='line'>root@DESKTOP-BR4MG38:~# sed -i.bak -e 's|archive.ubuntu.com/ubuntu/|mirrors.aliyun.com/ubuntu/|' -e 's|security.ubuntu.com/ubuntu/|mirrors.aliyun.com/ubuntu/|' /etc/apt/sources.list
</span></code></pre></td></tr></table></div></figure>
<p>在 WSL-Ubuntu 里面可以直接用 Win11 的程序,直接查看docker的信息:</p>
<figure class='code'><div class="highlight"><table><tr><td class="gutter"><pre class="line-numbers"><span class='line-number'>1</span>
<span class='line-number'>2</span>
<span class='line-number'>3</span>
<span class='line-number'>4</span>
<span class='line-number'>5</span>
<span class='line-number'>6</span>
<span class='line-number'>7</span>
<span class='line-number'>8</span>
<span class='line-number'>9</span>
<span class='line-number'>10</span>
<span class='line-number'>11</span>
<span class='line-number'>12</span>
<span class='line-number'>13</span>
<span class='line-number'>14</span>
<span class='line-number'>15</span>
<span class='line-number'>16</span>
<span class='line-number'>17</span>
<span class='line-number'>18</span>
<span class='line-number'>19</span>
<span class='line-number'>20</span>
<span class='line-number'>21</span>
<span class='line-number'>22</span>
<span class='line-number'>23</span>
<span class='line-number'>24</span>
<span class='line-number'>25</span>
<span class='line-number'>26</span>
<span class='line-number'>27</span>
<span class='line-number'>28</span>
<span class='line-number'>29</span>
<span class='line-number'>30</span>
<span class='line-number'>31</span>
<span class='line-number'>32</span>
<span class='line-number'>33</span>
<span class='line-number'>34</span>
</pre></td><td class='code'><pre><code class=''><span class='line'>winse@DESKTOP-BR4MG38:~$ docker version
</span><span class='line'>Client: Docker Engine - Community
</span><span class='line'> Cloud integration: v1.0.35+desktop.5
</span><span class='line'> Version: 24.0.7
</span><span class='line'> API version: 1.43
</span><span class='line'> Go version: go1.20.10
</span><span class='line'> Git commit: afdd53b
</span><span class='line'> Built: Thu Oct 26 09:08:17 2023
</span><span class='line'> OS/Arch: linux/amd64
</span><span class='line'> Context: default
</span><span class='line'>
</span><span class='line'>Server: Docker Desktop
</span><span class='line'> Engine:
</span><span class='line'> Version: 24.0.7
</span><span class='line'> API version: 1.43 (minimum version 1.12)
</span><span class='line'> Go version: go1.20.10
</span><span class='line'> Git commit: 311b9ff
</span><span class='line'> Built: Thu Oct 26 09:08:02 2023
</span><span class='line'> OS/Arch: linux/amd64
</span><span class='line'> Experimental: false
</span><span class='line'> containerd:
</span><span class='line'> Version: 1.6.25
</span><span class='line'> GitCommit: d8f198a4ed8892c764191ef7b3b06d8a2eeb5c7f
</span><span class='line'> runc:
</span><span class='line'> Version: 1.1.10
</span><span class='line'> GitCommit: v1.1.10-0-g18a0cb0
</span><span class='line'> docker-init:
</span><span class='line'> Version: 0.19.0
</span><span class='line'> GitCommit: de40ad0
</span><span class='line'>
</span><span class='line'>winse@DESKTOP-BR4MG38:~$ which docker
</span><span class='line'>/usr/bin/docker
</span><span class='line'>winse@DESKTOP-BR4MG38:~$ ll /usr/bin/docker
</span><span class='line'>lrwxrwxrwx 1 root root 48 Jan 13 11:03 /usr/bin/docker -> /mnt/wsl/docker-desktop/cli-tools/usr/bin/docker*
</span></code></pre></td></tr></table></div></figure>
<p>其实用的就是windows的docker</p>
<p><img src="/images/blogs/ai/wsl2-docker-cli.png" alt="" /></p>
<p>镜像加速</p>
<p><img src="/images/blogs/ai/docker-mirror.png" alt="" /></p>
<p>保存会重启docker,再查看docker的信息,确认Registry Mirrors:</p>
<figure class='code'><div class="highlight"><table><tr><td class="gutter"><pre class="line-numbers"><span class='line-number'>1</span>
<span class='line-number'>2</span>
<span class='line-number'>3</span>
<span class='line-number'>4</span>
<span class='line-number'>5</span>
<span class='line-number'>6</span>
<span class='line-number'>7</span>
<span class='line-number'>8</span>
<span class='line-number'>9</span>
<span class='line-number'>10</span>
<span class='line-number'>11</span>
<span class='line-number'>12</span>
<span class='line-number'>13</span>
<span class='line-number'>14</span>
<span class='line-number'>15</span>
<span class='line-number'>16</span>
<span class='line-number'>17</span>
<span class='line-number'>18</span>
<span class='line-number'>19</span>
<span class='line-number'>20</span>
<span class='line-number'>21</span>
<span class='line-number'>22</span>
<span class='line-number'>23</span>
<span class='line-number'>24</span>
<span class='line-number'>25</span>
<span class='line-number'>26</span>
<span class='line-number'>27</span>
<span class='line-number'>28</span>
<span class='line-number'>29</span>
<span class='line-number'>30</span>
<span class='line-number'>31</span>
<span class='line-number'>32</span>
<span class='line-number'>33</span>
<span class='line-number'>34</span>
<span class='line-number'>35</span>
<span class='line-number'>36</span>
<span class='line-number'>37</span>
<span class='line-number'>38</span>
<span class='line-number'>39</span>
<span class='line-number'>40</span>
<span class='line-number'>41</span>
<span class='line-number'>42</span>
<span class='line-number'>43</span>
<span class='line-number'>44</span>
<span class='line-number'>45</span>
<span class='line-number'>46</span>
<span class='line-number'>47</span>
<span class='line-number'>48</span>
<span class='line-number'>49</span>
<span class='line-number'>50</span>
<span class='line-number'>51</span>
<span class='line-number'>52</span>
<span class='line-number'>53</span>
<span class='line-number'>54</span>
<span class='line-number'>55</span>
<span class='line-number'>56</span>
<span class='line-number'>57</span>
<span class='line-number'>58</span>
<span class='line-number'>59</span>
<span class='line-number'>60</span>
<span class='line-number'>61</span>
<span class='line-number'>62</span>
<span class='line-number'>63</span>
<span class='line-number'>64</span>
<span class='line-number'>65</span>
<span class='line-number'>66</span>
<span class='line-number'>67</span>
<span class='line-number'>68</span>
<span class='line-number'>69</span>
<span class='line-number'>70</span>
<span class='line-number'>71</span>
<span class='line-number'>72</span>
<span class='line-number'>73</span>
<span class='line-number'>74</span>
<span class='line-number'>75</span>
<span class='line-number'>76</span>
<span class='line-number'>77</span>
<span class='line-number'>78</span>
<span class='line-number'>79</span>
<span class='line-number'>80</span>
<span class='line-number'>81</span>
<span class='line-number'>82</span>
<span class='line-number'>83</span>
<span class='line-number'>84</span>
<span class='line-number'>85</span>
<span class='line-number'>86</span>
<span class='line-number'>87</span>
<span class='line-number'>88</span>
<span class='line-number'>89</span>
<span class='line-number'>90</span>
<span class='line-number'>91</span>
<span class='line-number'>92</span>
<span class='line-number'>93</span>
</pre></td><td class='code'><pre><code class=''><span class='line'>winse@DESKTOP-BR4MG38:~$ docker info
</span><span class='line'>Client: Docker Engine - Community
</span><span class='line'> Version: 24.0.7
</span><span class='line'> Context: default
</span><span class='line'> Debug Mode: false
</span><span class='line'> Plugins:
</span><span class='line'> buildx: Docker Buildx (Docker Inc.)
</span><span class='line'> Version: v0.12.0-desktop.2
</span><span class='line'> Path: /usr/local/lib/docker/cli-plugins/docker-buildx
</span><span class='line'> compose: Docker Compose (Docker Inc.)
</span><span class='line'> Version: v2.23.3-desktop.2
</span><span class='line'> Path: /usr/local/lib/docker/cli-plugins/docker-compose
</span><span class='line'> dev: Docker Dev Environments (Docker Inc.)
</span><span class='line'> Version: v0.1.0
</span><span class='line'> Path: /usr/local/lib/docker/cli-plugins/docker-dev
</span><span class='line'> extension: Manages Docker extensions (Docker Inc.)
</span><span class='line'> Version: v0.2.21
</span><span class='line'> Path: /usr/local/lib/docker/cli-plugins/docker-extension
</span><span class='line'> feedback: Provide feedback, right in your terminal! (Docker Inc.)
</span><span class='line'> Version: 0.1
</span><span class='line'> Path: /usr/local/lib/docker/cli-plugins/docker-feedback
</span><span class='line'> init: Creates Docker-related starter files for your project (Docker Inc.)
</span><span class='line'> Version: v0.1.0-beta.10
</span><span class='line'> Path: /usr/local/lib/docker/cli-plugins/docker-init
</span><span class='line'> sbom: View the packaged-based Software Bill Of Materials (SBOM) for an image (Anchore Inc.)
</span><span class='line'> Version: 0.6.0
</span><span class='line'> Path: /usr/local/lib/docker/cli-plugins/docker-sbom
</span><span class='line'> scan: Docker Scan (Docker Inc.)
</span><span class='line'> Version: v0.26.0
</span><span class='line'> Path: /usr/local/lib/docker/cli-plugins/docker-scan
</span><span class='line'> scout: Docker Scout (Docker Inc.)
</span><span class='line'> Version: v1.2.0
</span><span class='line'> Path: /usr/local/lib/docker/cli-plugins/docker-scout
</span><span class='line'>
</span><span class='line'>Server:
</span><span class='line'> Containers: 1
</span><span class='line'> Running: 1
</span><span class='line'> Paused: 0
</span><span class='line'> Stopped: 0
</span><span class='line'> Images: 5
</span><span class='line'> Server Version: 24.0.7
</span><span class='line'> Storage Driver: overlay2
</span><span class='line'> Backing Filesystem: extfs
</span><span class='line'> Supports d_type: true
</span><span class='line'> Using metacopy: false
</span><span class='line'> Native Overlay Diff: true
</span><span class='line'> userxattr: false
</span><span class='line'> Logging Driver: json-file
</span><span class='line'> Cgroup Driver: cgroupfs
</span><span class='line'> Cgroup Version: 1
</span><span class='line'> Plugins:
</span><span class='line'> Volume: local
</span><span class='line'> Network: bridge host ipvlan macvlan null overlay
</span><span class='line'> Log: awslogs fluentd gcplogs gelf journald json-file local logentries splunk syslog
</span><span class='line'> Swarm: inactive
</span><span class='line'> Runtimes: io.containerd.runc.v2 runc
</span><span class='line'> Default Runtime: runc
</span><span class='line'> Init Binary: docker-init
</span><span class='line'> containerd version: d8f198a4ed8892c764191ef7b3b06d8a2eeb5c7f
</span><span class='line'> runc version: v1.1.10-0-g18a0cb0
</span><span class='line'> init version: de40ad0
</span><span class='line'> Security Options:
</span><span class='line'> seccomp
</span><span class='line'> Profile: unconfined
</span><span class='line'> Kernel Version: 5.15.133.1-microsoft-standard-WSL2
</span><span class='line'> Operating System: Docker Desktop
</span><span class='line'> OSType: linux
</span><span class='line'> Architecture: x86_64
</span><span class='line'> CPUs: 16
</span><span class='line'> Total Memory: 31.26GiB
</span><span class='line'> Name: docker-desktop
</span><span class='line'> ID: 340fee1c-e22a-485c-a973-f0e26d7535c9
</span><span class='line'> Docker Root Dir: /var/lib/docker
</span><span class='line'> Debug Mode: false
</span><span class='line'> HTTP Proxy: http.docker.internal:3128
</span><span class='line'> HTTPS Proxy: http.docker.internal:3128
</span><span class='line'> No Proxy: hubproxy.docker.internal
</span><span class='line'> Experimental: false
</span><span class='line'> Insecure Registries:
</span><span class='line'> hubproxy.docker.internal:5555
</span><span class='line'> 127.0.0.0/8
</span><span class='line'> Registry Mirrors:
</span><span class='line'> https://us69kjun.mirror.aliyuncs.com/
</span><span class='line'> https://docker.mirrors.ustc.edu.cn/
</span><span class='line'> https://hub-mirror.c.163.com/
</span><span class='line'> https://mirror.baidubce.com/
</span><span class='line'> Live Restore Enabled: false
</span><span class='line'>
</span><span class='line'>WARNING: No blkio throttle.read_bps_device support
</span><span class='line'>WARNING: No blkio throttle.write_bps_device support
</span><span class='line'>WARNING: No blkio throttle.read_iops_device support
</span><span class='line'>WARNING: No blkio throttle.write_iops_device support
</span><span class='line'>WARNING: daemon is not using the default seccomp profile</span></code></pre></td></tr></table></div></figure>
<h2>GPU</h2>
<h3>Driver</h3>
<p>根据Win11机器的显卡安装最新版本驱动(不要在WSL中安装任何Linux版的Nvidia驱动!)</p>
<p><a href="https://www.nvidia.com/Download/index.aspx">https://www.nvidia.com/Download/index.aspx</a></p>
<p>输入nvidia-smi,查验是否安装成功。WSL2里面啥都不用做,在WSL2命令行直接就能查看nvidia-smi。</p>
<p>启动docker也能一样查看</p>
<figure class='code'><div class="highlight"><table><tr><td class="gutter"><pre class="line-numbers"><span class='line-number'>1</span>
</pre></td><td class='code'><pre><code class=''><span class='line'>winse@DESKTOP-BR4MG38:stable-diffusion-taiyi$ docker run -it --rm --gpus all ubuntu nvidia-smi
</span></code></pre></td></tr></table></div></figure>
<p>其实这个启动的container也是一个WSL2。注意:WSL中不需要安装任何Linux版的Nvidia驱动!</p>
<p>验证 WLS2中Docker跑起来的容器 是否能够正常调用GPU:</p>
<ul>
<li><a href="https://soulteary.com/2023/07/29/docker-based-deep-learning-environment-under-windows.html">https://soulteary.com/2023/07/29/docker-based-deep-learning-environment-under-windows.html</a></li>
</ul>
<figure class='code'><div class="highlight"><table><tr><td class="gutter"><pre class="line-numbers"><span class='line-number'>1</span>
<span class='line-number'>2</span>
<span class='line-number'>3</span>
<span class='line-number'>4</span>
<span class='line-number'>5</span>
<span class='line-number'>6</span>
<span class='line-number'>7</span>
<span class='line-number'>8</span>
<span class='line-number'>9</span>
<span class='line-number'>10</span>
<span class='line-number'>11</span>
<span class='line-number'>12</span>
<span class='line-number'>13</span>
<span class='line-number'>14</span>
<span class='line-number'>15</span>
<span class='line-number'>16</span>
<span class='line-number'>17</span>
<span class='line-number'>18</span>
<span class='line-number'>19</span>
<span class='line-number'>20</span>
<span class='line-number'>21</span>
<span class='line-number'>22</span>
<span class='line-number'>23</span>
<span class='line-number'>24</span>
<span class='line-number'>25</span>
<span class='line-number'>26</span>
<span class='line-number'>27</span>
<span class='line-number'>28</span>
<span class='line-number'>29</span>
<span class='line-number'>30</span>
<span class='line-number'>31</span>
<span class='line-number'>32</span>
<span class='line-number'>33</span>
<span class='line-number'>34</span>
<span class='line-number'>35</span>
<span class='line-number'>36</span>
<span class='line-number'>37</span>
<span class='line-number'>38</span>
<span class='line-number'>39</span>
<span class='line-number'>40</span>
<span class='line-number'>41</span>
<span class='line-number'>42</span>
<span class='line-number'>43</span>
<span class='line-number'>44</span>
<span class='line-number'>45</span>
<span class='line-number'>46</span>
<span class='line-number'>47</span>
<span class='line-number'>48</span>
<span class='line-number'>49</span>
<span class='line-number'>50</span>
<span class='line-number'>51</span>
<span class='line-number'>52</span>
<span class='line-number'>53</span>
<span class='line-number'>54</span>
<span class='line-number'>55</span>
<span class='line-number'>56</span>
<span class='line-number'>57</span>
<span class='line-number'>58</span>
<span class='line-number'>59</span>
<span class='line-number'>60</span>
<span class='line-number'>61</span>
<span class='line-number'>62</span>
<span class='line-number'>63</span>
<span class='line-number'>64</span>
<span class='line-number'>65</span>
<span class='line-number'>66</span>
<span class='line-number'>67</span>
<span class='line-number'>68</span>
<span class='line-number'>69</span>
<span class='line-number'>70</span>
<span class='line-number'>71</span>
<span class='line-number'>72</span>
<span class='line-number'>73</span>
<span class='line-number'>74</span>
<span class='line-number'>75</span>
<span class='line-number'>76</span>
<span class='line-number'>77</span>
<span class='line-number'>78</span>
<span class='line-number'>79</span>
<span class='line-number'>80</span>
<span class='line-number'>81</span>
<span class='line-number'>82</span>
<span class='line-number'>83</span>
<span class='line-number'>84</span>
<span class='line-number'>85</span>
<span class='line-number'>86</span>
<span class='line-number'>87</span>
<span class='line-number'>88</span>
<span class='line-number'>89</span>
<span class='line-number'>90</span>
<span class='line-number'>91</span>
<span class='line-number'>92</span>
<span class='line-number'>93</span>
<span class='line-number'>94</span>
<span class='line-number'>95</span>
<span class='line-number'>96</span>
<span class='line-number'>97</span>
<span class='line-number'>98</span>
<span class='line-number'>99</span>
<span class='line-number'>100</span>
<span class='line-number'>101</span>
<span class='line-number'>102</span>
<span class='line-number'>103</span>
<span class='line-number'>104</span>
<span class='line-number'>105</span>
<span class='line-number'>106</span>
<span class='line-number'>107</span>
<span class='line-number'>108</span>
<span class='line-number'>109</span>
<span class='line-number'>110</span>
<span class='line-number'>111</span>
<span class='line-number'>112</span>
<span class='line-number'>113</span>
<span class='line-number'>114</span>
<span class='line-number'>115</span>
<span class='line-number'>116</span>
<span class='line-number'>117</span>
<span class='line-number'>118</span>
<span class='line-number'>119</span>
<span class='line-number'>120</span>
<span class='line-number'>121</span>
<span class='line-number'>122</span>
<span class='line-number'>123</span>
<span class='line-number'>124</span>
<span class='line-number'>125</span>
<span class='line-number'>126</span>
<span class='line-number'>127</span>
<span class='line-number'>128</span>
<span class='line-number'>129</span>
<span class='line-number'>130</span>
<span class='line-number'>131</span>
<span class='line-number'>132</span>
<span class='line-number'>133</span>
<span class='line-number'>134</span>
<span class='line-number'>135</span>
<span class='line-number'>136</span>
<span class='line-number'>137</span>
<span class='line-number'>138</span>
<span class='line-number'>139</span>
<span class='line-number'>140</span>
<span class='line-number'>141</span>
</pre></td><td class='code'><pre><code class=''><span class='line'>winse@DESKTOP-BR4MG38:~$ docker pull nvcr.io/nvidia/pytorch:23.07-py3
</span><span class='line'>23.07-py3: Pulling from nvidia/pytorch
</span><span class='line'>3153aa388d02: Pulling fs layer
</span><span class='line'>...
</span><span class='line'>ee3f0ae6e80f: Pull complete
</span><span class='line'>d4528227b5b8: Pull complete
</span><span class='line'>Digest: sha256:c53e8702a4ccb3f55235226dab29ef5d931a2a6d4d003ab47ca2e7e670f7922b
</span><span class='line'>Status: Downloaded newer image for nvcr.io/nvidia/pytorch:23.07-py3
</span><span class='line'>nvcr.io/nvidia/pytorch:23.07-py3
</span><span class='line'>
</span><span class='line'>What's Next?
</span><span class='line'> 1. Sign in to your Docker account → docker login
</span><span class='line'> 2. View a summary of image vulnerabilities and recommendations → docker scout quickview nvcr.io/nvidia/pytorch:23.07-py3
</span><span class='line'>
</span><span class='line'>
</span><span class='line'>winse@DESKTOP-BR4MG38:~$ docker run -it --gpus=all --rm nvcr.io/nvidia/pytorch:23.07-py3 nvidia-smi
</span><span class='line'>
</span><span class='line'>=============
</span><span class='line'>== PyTorch ==
</span><span class='line'>=============
</span><span class='line'>
</span><span class='line'>NVIDIA Release 23.07 (build 63867923)
</span><span class='line'>PyTorch Version 2.1.0a0+b5021ba
</span><span class='line'>
</span><span class='line'>Container image Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
</span><span class='line'>
</span><span class='line'>Copyright (c) 2014-2023 Facebook Inc.
</span><span class='line'>Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
</span><span class='line'>Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
</span><span class='line'>Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
</span><span class='line'>Copyright (c) 2011-2013 NYU (Clement Farabet)
</span><span class='line'>Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
</span><span class='line'>Copyright (c) 2006 Idiap Research Institute (Samy Bengio)
</span><span class='line'>Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
</span><span class='line'>Copyright (c) 2015 Google Inc.
</span><span class='line'>Copyright (c) 2015 Yangqing Jia
</span><span class='line'>Copyright (c) 2013-2016 The Caffe contributors
</span><span class='line'>All rights reserved.
</span><span class='line'>
</span><span class='line'>Various files include modifications (c) NVIDIA CORPORATION & AFFILIATES. All rights reserved.
</span><span class='line'>
</span><span class='line'>This container image and its contents are governed by the NVIDIA Deep Learning Container License.
</span><span class='line'>By pulling and using the container, you accept the terms and conditions of this license:
</span><span class='line'>https://developer.nvidia.com/ngc/nvidia-deep-learning-container-license
</span><span class='line'>
</span><span class='line'>NOTE: The SHMEM allocation limit is set to the default of 64MB. This may be
</span><span class='line'> insufficient for PyTorch. NVIDIA recommends the use of the following flags:
</span><span class='line'> docker run --gpus all --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 ...
</span><span class='line'>
</span><span class='line'>Sat Jan 13 14:01:37 2024
</span><span class='line'>+---------------------------------------------------------------------------------------+
</span><span class='line'>| NVIDIA-SMI 535.146.01 Driver Version: 537.99 CUDA Version: 12.2 |
</span><span class='line'>|-----------------------------------------+----------------------+----------------------+
</span><span class='line'>| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
</span><span class='line'>| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
</span><span class='line'>| | | MIG M. |
</span><span class='line'>|=========================================+======================+======================|
</span><span class='line'>| 0 Quadro T2000 On | 00000000:01:00.0 On | N/A |
</span><span class='line'>| N/A 43C P8 6W / 60W | 856MiB / 4096MiB | 9% Default |
</span><span class='line'>| | | N/A |
</span><span class='line'>+-----------------------------------------+----------------------+----------------------+
</span><span class='line'>
</span><span class='line'>+---------------------------------------------------------------------------------------+
</span><span class='line'>| Processes: |
</span><span class='line'>| GPU GI CI PID Type Process name GPU Memory |
</span><span class='line'>| ID ID Usage |
</span><span class='line'>|=======================================================================================|
</span><span class='line'>| 0 N/A N/A 27 G /Xwayland N/A |
</span><span class='line'>| 0 N/A N/A 41 G /Xwayland N/A |
</span><span class='line'>| 0 N/A N/A 42 G /Xwayland N/A |
</span><span class='line'>+---------------------------------------------------------------------------------------+
</span><span class='line'>
</span><span class='line'>
</span><span class='line'>winse@DESKTOP-BR4MG38:~$ docker run --rm --gpus all nvcr.io/nvidia/k8s/cuda-sample:nbody nbody -gpu -benchmark
</span><span class='line'>Unable to find image 'nvcr.io/nvidia/k8s/cuda-sample:nbody' locally
</span><span class='line'>nbody: Pulling from nvidia/k8s/cuda-sample
</span><span class='line'>22c5ef60a68e: Pull complete
</span><span class='line'>1939e4248814: Pull complete
</span><span class='line'>548afb82c856: Pull complete
</span><span class='line'>a424d45fd86f: Pull complete
</span><span class='line'>207b64ab7ce6: Pull complete
</span><span class='line'>f65423f1b49b: Pull complete
</span><span class='line'>2b60900a3ea5: Pull complete
</span><span class='line'>e9bff09d04df: Pull complete
</span><span class='line'>edc14edf1b04: Pull complete
</span><span class='line'>1f37f461c076: Pull complete
</span><span class='line'>9026fb14bf88: Pull complete
</span><span class='line'>Digest: sha256:59261e419d6d48a772aad5bb213f9f1588fcdb042b115ceb7166c89a51f03363
</span><span class='line'>Status: Downloaded newer image for nvcr.io/nvidia/k8s/cuda-sample:nbody
</span><span class='line'>Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance.
</span><span class='line'> -fullscreen (run n-body simulation in fullscreen mode)
</span><span class='line'> -fp64 (use double precision floating point values for simulation)
</span><span class='line'> -hostmem (stores simulation data in host memory)
</span><span class='line'> -benchmark (run benchmark to measure performance)
</span><span class='line'> -numbodies=<N> (number of bodies (>= 1) to run in simulation)
</span><span class='line'> -device=<d> (where d=0,1,2.... for the CUDA device to use)
</span><span class='line'> -numdevices=<i> (where i=(number of CUDA devices > 0) to use for simulation)
</span><span class='line'> -compare (compares simulation results running once on the default GPU and once on the CPU)
</span><span class='line'> -cpu (run n-body simulation on the CPU)
</span><span class='line'> -tipsy=<file.bin> (load a tipsy model file for simulation)
</span><span class='line'>
</span><span class='line'>NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.
</span><span class='line'>
</span><span class='line'>> Windowed mode
</span><span class='line'>> Simulation data stored in video memory
</span><span class='line'>> Single precision floating point simulation
</span><span class='line'>> 1 Devices used for simulation
</span><span class='line'>GPU Device 0: "Turing" with compute capability 7.5
</span><span class='line'>
</span><span class='line'>> Compute 7.5 CUDA device: [Quadro T2000]
</span><span class='line'>16384 bodies, total time for 10 iterations: 64.071 ms
</span><span class='line'>= 41.897 billion interactions per second
</span><span class='line'>= 837.937 single-precision GFLOP/s at 20 flops per interaction
</span><span class='line'>
</span><span class='line'>
</span><span class='line'>#再跑一遍
</span><span class='line'>winse@DESKTOP-BR4MG38:~$ docker run --rm --gpus all nvcr.io/nvidia/k8s/cuda-sample:nbody nbody -gpu -benchmark
</span><span class='line'>Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance.
</span><span class='line'> -fullscreen (run n-body simulation in fullscreen mode)
</span><span class='line'> -fp64 (use double precision floating point values for simulation)
</span><span class='line'> -hostmem (stores simulation data in host memory)
</span><span class='line'> -benchmark (run benchmark to measure performance)
</span><span class='line'> -numbodies=<N> (number of bodies (>= 1) to run in simulation)
</span><span class='line'> -device=<d> (where d=0,1,2.... for the CUDA device to use)
</span><span class='line'> -numdevices=<i> (where i=(number of CUDA devices > 0) to use for simulation)
</span><span class='line'> -compare (compares simulation results running once on the default GPU and once on the CPU)
</span><span class='line'> -cpu (run n-body simulation on the CPU)
</span><span class='line'> -tipsy=<file.bin> (load a tipsy model file for simulation)
</span><span class='line'>
</span><span class='line'>NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.
</span><span class='line'>
</span><span class='line'>> Windowed mode
</span><span class='line'>> Simulation data stored in video memory
</span><span class='line'>> Single precision floating point simulation
</span><span class='line'>> 1 Devices used for simulation
</span><span class='line'>GPU Device 0: "Turing" with compute capability 7.5
</span><span class='line'>
</span><span class='line'>> Compute 7.5 CUDA device: [Quadro T2000]
</span><span class='line'>16384 bodies, total time for 10 iterations: 23.398 ms
</span><span class='line'>= 114.724 billion interactions per second
</span><span class='line'>= 2294.490 single-precision GFLOP/s at 20 flops per interaction
</span></code></pre></td></tr></table></div></figure>
<h3>WSL2 cuda-toolkit</h3>
<p>开发环境/运行环境
* <a href="https://zhuanlan.zhihu.com/p/555151725">https://zhuanlan.zhihu.com/p/555151725</a>
* <a href="https://docs.nvidia.com/cuda/wsl-user-guide/index.html#cuda-support-for-WSL2">https://docs.nvidia.com/cuda/wsl-user-guide/index.html#cuda-support-for-WSL2</a>
* <a href="https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=WSL-Ubuntu&target_version=2.0&target_type=deb_network">https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=WSL-Ubuntu&target_version=2.0&target_type=deb_network</a></p>
<p><img src="/images/blogs/ai/wsl2-cuda.png" alt="" /></p>
<figure class='code'><div class="highlight"><table><tr><td class="gutter"><pre class="line-numbers"><span class='line-number'>1</span>
<span class='line-number'>2</span>
<span class='line-number'>3</span>
<span class='line-number'>4</span>
</pre></td><td class='code'><pre><code class=''><span class='line'>wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-keyring_1.1-1_all.deb
</span><span class='line'>sudo dpkg -i cuda-keyring_1.1-1_all.deb
</span><span class='line'>sudo apt-get update
</span><span class='line'>sudo apt-get -y install cuda-toolkit-12-3</span></code></pre></td></tr></table></div></figure>
<p>运行安装:</p>
<figure class='code'><div class="highlight"><table><tr><td class="gutter"><pre class="line-numbers"><span class='line-number'>1</span>
<span class='line-number'>2</span>
<span class='line-number'>3</span>
<span class='line-number'>4</span>
<span class='line-number'>5</span>
<span class='line-number'>6</span>
<span class='line-number'>7</span>
<span class='line-number'>8</span>
<span class='line-number'>9</span>
<span class='line-number'>10</span>
<span class='line-number'>11</span>
<span class='line-number'>12</span>
<span class='line-number'>13</span>
<span class='line-number'>14</span>
<span class='line-number'>15</span>
<span class='line-number'>16</span>
<span class='line-number'>17</span>
<span class='line-number'>18</span>
<span class='line-number'>19</span>
<span class='line-number'>20</span>
<span class='line-number'>21</span>
<span class='line-number'>22</span>
</pre></td><td class='code'><pre><code class=''><span class='line'>
</span><span class='line'>(demo_env) winse@DESKTOP-BR4MG38:ai$ wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-keyring_1.1-1_all.deb
</span><span class='line'>--2024-01-14 23:53:22-- https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-keyring_1.1-1_all.deb
</span><span class='line'>Resolving developer.download.nvidia.com (developer.download.nvidia.com)... 152.199.39.144, 72.21.80.5, 72.21.80.6, ...
</span><span class='line'>Connecting to developer.download.nvidia.com (developer.download.nvidia.com)|152.199.39.144|:443... connected.
</span><span class='line'>HTTP request sent, awaiting response... 301 Moved Permanently
</span><span class='line'>Location: https://developer.download.nvidia.cn/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-keyring_1.1-1_all.deb [following]
</span><span class='line'>--2024-01-14 23:53:23-- https://developer.download.nvidia.cn/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-keyring_1.1-1_all.deb
</span><span class='line'>Resolving developer.download.nvidia.cn (developer.download.nvidia.cn)... 59.36.216.26, 59.36.216.27, 175.4.58.180, ...
</span><span class='line'>Connecting to developer.download.nvidia.cn (developer.download.nvidia.cn)|59.36.216.26|:443... connected.
</span><span class='line'>HTTP request sent, awaiting response... 200 OK
</span><span class='line'>Length: 4328 (4.2K) [application/x-deb]
</span><span class='line'>Saving to: ‘cuda-keyring_1.1-1_all.deb’
</span><span class='line'>
</span><span class='line'>cuda-keyring_1.1-1_all.deb 100%[====================================================>] 4.23K --.-KB/s in 0s
</span><span class='line'>
</span><span class='line'>2024-01-14 23:53:23 (1.61 GB/s) - ‘cuda-keyring_1.1-1_all.deb’ saved [4328/4328]
</span><span class='line'>
</span><span class='line'>(demo_env) winse@DESKTOP-BR4MG38:ai$
</span><span class='line'>(demo_env) winse@DESKTOP-BR4MG38:ai$ sudo dpkg -i cuda-keyring_1.1-1_all.deb
</span><span class='line'>(demo_env) winse@DESKTOP-BR4MG38:ai$ sudo apt-get update
</span><span class='line'>(demo_env) winse@DESKTOP-BR4MG38:ai$ sudo apt-get -y install cuda-toolkit-12-3
</span></code></pre></td></tr></table></div></figure>
<figure class='code'><div class="highlight"><table><tr><td class="gutter"><pre class="line-numbers"><span class='line-number'>1</span>
<span class='line-number'>2</span>
<span class='line-number'>3</span>
</pre></td><td class='code'><pre><code class=''><span class='line'>(base) winse@DESKTOP-BR4MG38:~$ vi .bashrc
</span><span class='line'>
</span><span class='line'>export PATH=/usr/local/cuda/bin:$PATH
</span></code></pre></td></tr></table></div></figure>
<p>新打开一个shell:</p>
<figure class='code'><div class="highlight"><table><tr><td class="gutter"><pre class="line-numbers"><span class='line-number'>1</span>
<span class='line-number'>2</span>
<span class='line-number'>3</span>
<span class='line-number'>4</span>
<span class='line-number'>5</span>
<span class='line-number'>6</span>
</pre></td><td class='code'><pre><code class=''><span class='line'>(base) winse@DESKTOP-BR4MG38:~$ nvcc -V
</span><span class='line'>nvcc: NVIDIA (R) Cuda compiler driver
</span><span class='line'>Copyright (c) 2005-2023 NVIDIA Corporation
</span><span class='line'>Built on Wed_Nov_22_10:17:15_PST_2023
</span><span class='line'>Cuda compilation tools, release 12.3, V12.3.107
</span><span class='line'>Build cuda_12.3.r12.3/compiler.33567101_0</span></code></pre></td></tr></table></div></figure>
<h3>cuDNN</h3>
<p><a href="https://developer.nvidia.com/cudnn">https://developer.nvidia.com/cudnn</a></p>
<p>NVIDIA CUDA® Deep Neural Network library 支持神经网络的推理。</p>
<p>注册下载对应CUDA的版本 <a href="https://developer.nvidia.com/rdp/cudnn-download">https://developer.nvidia.com/rdp/cudnn-download</a></p>
<p>注意:如果不在WSL2-Ubuntu中直接使用cuDNN,后续通过容器直接拉取包含cuDNN的容器,就可以省略这一部分。</p>
<p><a href="https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#installlinux-deb">https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#installlinux-deb</a></p>
<figure class='code'><div class="highlight"><table><tr><td class="gutter"><pre class="line-numbers"><span class='line-number'>1</span>
<span class='line-number'>2</span>
<span class='line-number'>3</span>
<span class='line-number'>4</span>
<span class='line-number'>5</span>
<span class='line-number'>6</span>
<span class='line-number'>7</span>
<span class='line-number'>8</span>
<span class='line-number'>9</span>
<span class='line-number'>10</span>
<span class='line-number'>11</span>
<span class='line-number'>12</span>
<span class='line-number'>13</span>
<span class='line-number'>14</span>
<span class='line-number'>15</span>
<span class='line-number'>16</span>
<span class='line-number'>17</span>
<span class='line-number'>18</span>
<span class='line-number'>19</span>
<span class='line-number'>20</span>
<span class='line-number'>21</span>
<span class='line-number'>22</span>
<span class='line-number'>23</span>
<span class='line-number'>24</span>
<span class='line-number'>25</span>
<span class='line-number'>26</span>
</pre></td><td class='code'><pre><code class=''><span class='line'>#sudo dpkg -i cudnn-local-repo-ubuntu2004-8.9.6.50_1.0-1_amd64.deb
</span><span class='line'>#sudo dpkg -r cudnn-local-repo-ubuntu2004-8.9.6.50
</span><span class='line'>#sudo rm /etc/apt/sources.list.d/cudnn-local-ubuntu2004-8.9.6.50.list
</span><span class='line'>
</span><span class='line'>(base) winse@DESKTOP-BR4MG38:i$ sudo dpkg -i cudnn-local-repo-ubuntu2004-8.9.7.29_1.0-1_amd64.deb
</span><span class='line'>
</span><span class='line'>(base) winse@DESKTOP-BR4MG38:i$ sudo cp /var/cudnn-local-repo-ubuntu2004-8.9.7.29/cudnn-local-30472A84-keyring.gpg /usr/share/keyrings/
</span><span class='line'>
</span><span class='line'>
</span><span class='line'>(base) winse@DESKTOP-BR4MG38:i$ sudo apt install zlib1g
</span><span class='line'>
</span><span class='line'>(base) winse@DESKTOP-BR4MG38:i$ sudo apt update
</span><span class='line'>
</span><span class='line'>(base) winse@DESKTOP-BR4MG38:i$ apt search libcudnn8
</span><span class='line'>Sorting... Done
</span><span class='line'>Full Text Search... Done
</span><span class='line'>libcudnn8/unknown 8.9.7.29-1+cuda12.2 amd64
</span><span class='line'> cuDNN runtime libraries
</span><span class='line'>
</span><span class='line'>libcudnn8-dev/unknown 8.9.7.29-1+cuda12.2 amd64
</span><span class='line'> cuDNN development libraries and headers
</span><span class='line'>
</span><span class='line'>libcudnn8-samples/unknown 8.9.7.29-1+cuda12.2 amd64
</span><span class='line'> cuDNN samples
</span><span class='line'>
</span><span class='line'>(base) winse@DESKTOP-BR4MG38:i$ sudo apt install libcudnn8 libcudnn8-dev libcudnn8-samples
</span></code></pre></td></tr></table></div></figure>
<p>校验是否安装成功</p>
<p><a href="https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#verify">https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#verify</a></p>
<p>运行报错参考 <a href="https://forums.developer.nvidia.com/t/freeimage-is-not-set-up-correctly-please-ensure-freeimae-is-set-up-correctly/66950">https://forums.developer.nvidia.com/t/freeimage-is-not-set-up-correctly-please-ensure-freeimae-is-set-up-correctly/66950</a></p>
<figure class='code'><div class="highlight"><table><tr><td class="gutter"><pre class="line-numbers"><span class='line-number'>1</span>
<span class='line-number'>2</span>
<span class='line-number'>3</span>
<span class='line-number'>4</span>
<span class='line-number'>5</span>
<span class='line-number'>6</span>
<span class='line-number'>7</span>
<span class='line-number'>8</span>
<span class='line-number'>9</span>
<span class='line-number'>10</span>
<span class='line-number'>11</span>
<span class='line-number'>12</span>
<span class='line-number'>13</span>
<span class='line-number'>14</span>
<span class='line-number'>15</span>
<span class='line-number'>16</span>
<span class='line-number'>17</span>
<span class='line-number'>18</span>
<span class='line-number'>19</span>
<span class='line-number'>20</span>
<span class='line-number'>21</span>
<span class='line-number'>22</span>
<span class='line-number'>23</span>
<span class='line-number'>24</span>
<span class='line-number'>25</span>
<span class='line-number'>26</span>
<span class='line-number'>27</span>
<span class='line-number'>28</span>
<span class='line-number'>29</span>
<span class='line-number'>30</span>
<span class='line-number'>31</span>
<span class='line-number'>32</span>
</pre></td><td class='code'><pre><code class=''><span class='line'>(base) winse@DESKTOP-BR4MG38:i$ cp -r /usr/src/cudnn_samples_v8 ./
</span><span class='line'>(base) winse@DESKTOP-BR4MG38:i$ cd cudnn_samples_v8/mnistCUDNN/
</span><span class='line'>(base) winse@DESKTOP-BR4MG38:mnistCUDNN$