-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathall_loss_aug.py
executable file
·157 lines (141 loc) · 9.26 KB
/
all_loss_aug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import torch
import torch.nn as nn
from torch.autograd import Variable
import torchvision
import torchvision.transforms as transforms
import os
import pickle
import random
import sys
class transition_loss_(torch.nn.Module):
def __init__(self):
super(transition_loss_, self).__init__()
self.zero = Variable(torch.zeros(1), requires_grad=False)
self.zero = self.zero.cuda()
def forward(self, log_y_alpha, log_y_beta, log_y_gamma, alpha_index, beta_index, gamma_index, label_weight = None):
if label_weight is None:
label_w = 1
else:
label_w = label_weight.sum() / label_weight[alpha_index * 16 + beta_index * 4 + gamma_index] / 64.0
return torch.max(self.zero, log_y_alpha[:, alpha_index] + log_y_beta[:, beta_index] - log_y_gamma[:, gamma_index]) * label_w
class transition_loss_not_(torch.nn.Module):
def __init__(self):
super(transition_loss_not_, self).__init__()
self.zero = Variable(torch.zeros(1), requires_grad=False)
self.one = Variable(torch.ones(1), requires_grad=False)
self.zero = self.zero.cuda()
self.one = self.one.cuda()
def forward(self, log_y_alpha, log_y_beta, log_y_gamma, alpha_index, beta_index, gamma_index):
very_small = 1e-8
log_not_y_gamma = (self.one - log_y_gamma.exp()).clamp(very_small).log()
return torch.max(self.zero, log_y_alpha[:, alpha_index] + log_y_beta[:, beta_index] - log_not_y_gamma[:, gamma_index])
class segment_loss_(torch.nn.Module):
def __init__(self):
super(segment_loss_, self).__init__()
self.zero = Variable(torch.zeros(1), requires_grad=False)
self.zero = self.zero.cuda()
self.LogSigmoid = nn.LogSigmoid()
def forward(self, alpha_logits):
softmax_alpha = nn.LogSoftmax(1)(alpha_logits[:, 0:4])
seg = self.LogSigmoid(alpha_logits[:, 4:])
return torch.abs(softmax_alpha[:, 0] + softmax_alpha[:, 1] - seg)
class transitivity_loss_H_(torch.nn.Module):
def __init__(self):
super(transitivity_loss_H_, self).__init__()
def forward(self, alpha_logits, beta_logits, gamma_logits, label_weight_H = None):
log_y_alpha = nn.LogSoftmax(1)(alpha_logits[:, 0:4])
log_y_beta = nn.LogSoftmax(1)(beta_logits[:, 0:4])
log_y_gamma = nn.LogSoftmax(1)(gamma_logits[:, 0:4])
transition_loss = transition_loss_()
transition_loss_not = transition_loss_not_()
loss = transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 2, 1, 1, label_weight_H)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 2, 2, 2, label_weight_H)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 2, 0, 0, label_weight_H)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 0, 0, 0, label_weight_H)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 0, 2, 0, label_weight_H)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 1, 1, 1, label_weight_H)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 1, 2, 1, label_weight_H)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 2, 3, 3, label_weight_H)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 3, 2, 3, label_weight_H)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 0, 3, 2)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 0, 3, 1)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 1, 3, 2)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 1, 3, 0)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 3, 0, 2)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 3, 0, 1)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 3, 1, 2)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 3, 1, 0)
return loss
class transitivity_loss_T_(torch.nn.Module):
def __init__(self):
super(transitivity_loss_T_, self).__init__()
def forward(self, alpha_logits, beta_logits, gamma_logits, label_weight_T = None):
log_y_alpha = nn.LogSoftmax(1)(alpha_logits[:, 0:4])
log_y_beta = nn.LogSoftmax(1)(beta_logits[:, 0:4])
log_y_gamma = nn.LogSoftmax(1)(gamma_logits[:, 0:4])
transition_loss = transition_loss_()
transition_loss_not = transition_loss_not_()
loss = transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 0, 0, 0, label_weight_T)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 0, 2, 0, label_weight_T)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 1, 1, 1, label_weight_T)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 1, 2, 1, label_weight_T)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 2, 0, 0, label_weight_T)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 2, 1, 1, label_weight_T)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 2, 2, 2, label_weight_T)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 2, 3, 3, label_weight_T)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 3, 2, 3, label_weight_T)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 0, 3, 1)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 0, 3, 2)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 1, 3, 0)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 1, 3, 2)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 3, 0, 1)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 3, 0, 2)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 3, 1, 0)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 3, 1, 2)
return loss
class cross_category_loss_(torch.nn.Module):
def __init__(self):
super(cross_category_loss_, self).__init__()
def forward(self, alpha_logits, beta_logits, gamma_logits):
log_y_alpha = nn.LogSoftmax(1)(alpha_logits)
log_y_beta = nn.LogSoftmax(1)(beta_logits)
log_y_gamma = nn.LogSoftmax(1)(gamma_logits)
transition_loss = transition_loss_()
transition_loss_not = transition_loss_not_()
loss = transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 0, 4, 4)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 0, 4, 1)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 0, 4, 2)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 0, 6, 4)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 0, 6, 1)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 0, 6, 2)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 1, 5, 5)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 1, 5, 0)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 1, 5, 2)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 1, 6, 5)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 1, 6, 0)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 1, 6, 2)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 2, 4, 4)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 2, 4, 1)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 2, 4, 2)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 2, 5, 5)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 2, 5, 0)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 2, 5, 2)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 2, 6, 6)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 2, 7, 7)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 2, 7, 2)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 4, 0, 4)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 4, 0, 1)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 4, 0, 2)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 4, 2, 4)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 4, 2, 1)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 4, 2, 2)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 5, 1, 5)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 5, 1, 0)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 5, 1, 2)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 5, 2, 5)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 5, 2, 0)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 5, 2, 2)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 6, 2, 6)
loss += transition_loss(log_y_alpha, log_y_beta, log_y_gamma, 7, 2, 7)
loss += transition_loss_not(log_y_alpha, log_y_beta, log_y_gamma, 7, 2, 2)
return loss