-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgps.c
176 lines (145 loc) · 5.05 KB
/
gps.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/* Applying Kalman filters to GPS data. */
#include <assert.h>
#include <math.h>
#include "gps.h"
static const double PI = 3.14159265;
static const double EARTH_RADIUS_IN_MILES = 3963.1676;
KalmanFilter alloc_filter_velocity2d(double noise) {
/* The state model has four dimensions:
x, y, x', y'
Each time step we can only observe position, not velocity, so the
observation vector has only two dimensions.
*/
KalmanFilter f = alloc_filter(4, 2);
/* Assuming the axes are rectilinear does not work well at the
poles, but it has the bonus that we don't need to convert between
lat/long and more rectangular coordinates. The slight inaccuracy
of our physics model is not too important.
*/
double v2p = 0.001;
set_identity_matrix(f.state_transition);
set_seconds_per_timestep(f, 1.0);
/* We observe (x, y) in each time step */
set_matrix(f.observation_model,
1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0);
/* Noise in the world. */
double pos = 0.000001;
set_matrix(f.process_noise_covariance,
pos, 0.0, 0.0, 0.0,
0.0, pos, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0);
/* Noise in our observation */
set_matrix(f.observation_noise_covariance,
pos * noise, 0.0,
0.0, pos * noise);
/* The start position is totally unknown, so give a high variance */
set_matrix(f.state_estimate, 0.0, 0.0, 0.0, 0.0);
set_identity_matrix(f.estimate_covariance);
double trillion = 1000.0 * 1000.0 * 1000.0 * 1000.0;
scale_matrix(f.estimate_covariance, trillion);
return f;
}
/* The position units are in thousandths of latitude and longitude.
The velocity units are in thousandths of position units per second.
So if there is one second per timestep, a velocity of 1 will change
the lat or long by 1 after a million timesteps.
Thus a typical position is hundreds of thousands of units.
A typical velocity is maybe ten.
*/
void set_seconds_per_timestep(KalmanFilter f,
double seconds_per_timestep) {
/* unit_scaler accounts for the relation between position and
velocity units */
double unit_scaler = 0.001;
f.state_transition.data[0][2] = unit_scaler * seconds_per_timestep;
f.state_transition.data[1][3] = unit_scaler * seconds_per_timestep;
}
void update_velocity2d(KalmanFilter f, double lat, double lon,
double seconds_since_last_timestep) {
set_seconds_per_timestep(f, seconds_since_last_timestep);
set_matrix(f.observation, lat * 1000.0, lon * 1000.0);
update(f);
}
int read_lat_long(FILE* file, double* lat, double* lon) {
while (1) {
/* If we find a lat long pair, we're done */
if (2 == fscanf(file, "%lf,%lf", lat, lon)) {
return 1;
}
/* Advance to the next line */
int ch;
while ((ch = getc(file)) != '\n') {
if (EOF == ch) {
return 0;
}
}
}
}
void get_lat_long(KalmanFilter f, double* lat, double* lon) {
*lat = f.state_estimate.data[0][0] / 1000.0;
*lon = f.state_estimate.data[1][0] / 1000.0;
}
void get_velocity(KalmanFilter f, double* delta_lat, double* delta_lon) {
*delta_lat = f.state_estimate.data[2][0] / (1000.0 * 1000.0);
*delta_lon = f.state_estimate.data[3][0] / (1000.0 * 1000.0);
}
/* See
http://www.movable-type.co.uk/scripts/latlong.html
for formulas */
double get_bearing(KalmanFilter f) {
double lat, lon, delta_lat, delta_lon, x, y;
get_lat_long(f, &lat, &lon);
get_velocity(f, &delta_lat, &delta_lon);
/* Convert to radians */
double to_radians = PI / 180.0;
lat *= to_radians;
lon *= to_radians;
delta_lat *= to_radians;
delta_lon *= to_radians;
/* Do math */
double lat1 = lat - delta_lat;
y = sin(delta_lon) * cos(lat);
x = cos(lat1) * sin(lat) - sin(lat1) * cos(lat) * cos(delta_lon);
double bearing = atan2(y, x);
/* Convert to degrees */
bearing = bearing / to_radians;
while (bearing >= 360.0) {
bearing -= 360.0;
}
while (bearing < 0.0) {
bearing += 360.0;
}
return bearing;
}
double calculate_mph(double lat, double lon,
double delta_lat, double delta_lon) {
/* First, let's calculate a unit-independent measurement - the radii
of the earth traveled in each second. (Presumably this will be
a very small number.) */
/* Convert to radians */
double to_radians = PI / 180.0;
lat *= to_radians;
lon *= to_radians;
delta_lat *= to_radians;
delta_lon *= to_radians;
/* Haversine formula */
double lat1 = lat - delta_lat;
double sin_half_dlat = sin(delta_lat / 2.0);
double sin_half_dlon = sin(delta_lon / 2.0);
double a = sin_half_dlat * sin_half_dlat + cos(lat1) * cos(lat)
* sin_half_dlon * sin_half_dlon;
double radians_per_second = 2 * atan2(1000.0 * sqrt(a),
1000.0 * sqrt(1.0 - a));
/* Convert units */
double miles_per_second = radians_per_second * EARTH_RADIUS_IN_MILES;
double miles_per_hour = miles_per_second * 60.0 * 60.0;
return miles_per_hour;
}
double get_mph(KalmanFilter f) {
double lat, lon, delta_lat, delta_lon;
get_lat_long(f, &lat, &lon);
get_velocity(f, &delta_lat, &delta_lon);
return calculate_mph(lat, lon, delta_lat, delta_lon);
}