-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathget_data_rki_ndr_history.py
39 lines (27 loc) · 1.44 KB
/
get_data_rki_ndr_history.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import pandas as pd
from get_data_rki_ndr_districts_nrw import clear_data_nrw_gesamt
from utils.storage import download_file, upload_dataframe
def _move_stand_to_front(df):
col = df["Stand"]
df.drop(columns=["Stand"], inplace=True)
df.insert(0, "Stand", col)
def write_data_rki_ndr_history():
archive_name = "rki_ndr_districts_nrw_gesamt_history"
df_today = clear_data_nrw_gesamt()
df_today.drop(columns=["Studio-Link"], inplace=True)
df_today["Stand"] = pd.to_datetime(df_today["Stand"].str.slice(0, 8), dayfirst=True)
_move_stand_to_front(df_today)
df_archive = pd.read_csv(download_file(f"{archive_name}.csv"), parse_dates=["Stand"])
# TODO: Remove this workaround eventually, really only needs to happen once for consistency
_move_stand_to_front(df_archive)
df = pd.concat([df_archive, df_today])
# Remove duplicate rows
df.drop_duplicates(subset=["Stand"], inplace=True, keep="last")
df.reset_index(drop=True, inplace=True)
# Update calculated columns
df["Gemeldete Neuinfektionen 7-Tage-Mittel"] = df["Neuinfektionen zum Vortag"].rolling(7).mean().round(1)
df["Gemeldete Neue Todesfälle 7-Tage-Mittel"] = df["Neue Todesfälle zum Vortag"].rolling(7).mean().round(1)
upload_dataframe(df, f"{archive_name}.csv")
# Only keep the last 90 days
df_90 = df[df["Stand"] >= df["Stand"].max() - pd.Timedelta(days=90)]
upload_dataframe(df_90, f"{archive_name}_90_days.csv")