This repository has been archived by the owner on Dec 28, 2022. It is now read-only.
forked from rrwick/SRST2-table-from-assemblies
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetector.py
418 lines (355 loc) · 23 KB
/
detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
#!/usr/bin/env python
"""
Screening genes in genome assemblies (contigs) and producing an SRST2-formatted gene table.
This is a tool to screen for genes in a collection of contigs and output the results in a table which mimics those produced by SRST2.
This script is able to process multiple input FASTA files.
Subject sequences (serves as a BLAST database): a collection of genome assemblies in the FASTA format
Query sequences: a reference gene database in the SRST2-compatible format
Python versions 2.7 and 3 compatible.
Previous names: srst2_table_from_assemblies.py, screen_genes_in_assemblies.py and screener.py
Copyright (C) 2015-2017 Ryan Wick <[email protected]>, Yu Wan <[email protected]>
Licensed under the GNU General Public License, version 3 (https://www.gnu.org/licenses/gpl-3.0.en.html)
Early edition: 8-9 Sep 2017; the latest edition: 24 Nov 2018
"""
from __future__ import print_function
from __future__ import division
import os
import sys
sys.dont_write_bytecode = True # Do not write .pyc files (in the __pycache__ directory) on the import of source modules. Use it before "from parseBLAST import ...".
import gzip
import argparse
import subprocess
from distutils import spawn
from collections import namedtuple
from parseBLAST import Hit, Hap, Cluster, Assembly # for classes that process BLAST outputs
def get_arguments():
parser = argparse.ArgumentParser(description = "Targeted gene detection for assemblies")
parser.add_argument("--assemblies", nargs = "+", type = str, required = True, help = "Fasta file/s for assembled contigs")
parser.add_argument("--gene_db", type = str, required = True, help = "Fasta file for gene databases")
parser.add_argument("--prefix", type = str, required = False, default = "BLAST", help = "Output prefix for the table of results")
parser.add_argument("--suffix", type = str, required = False, default = ".fasta", help = "Characters to be chopped off from the end of every assembly name in order to get a sample name")
parser.add_argument("--outdir", type =str, required = False, default = ".", help = "Output directory for the table of results")
parser.add_argument("--min_coverage", type = float, required = False, default = 90.0, help = "Minimum %%coverage cutoff for gene reporting (default 90)")
parser.add_argument("--max_divergence", type = float, required = False, default = 10.0, help = "Maximum %%divergence cutoff for gene reporting (default 10)")
parser.add_argument("--report_new_consensus", action = "store_true", required = False, help = "Configure it to save consensus sequences of variants")
parser.add_argument("--report_all_consensus", action = "store_true", required = False, help = "Configure it to save all consensus sequences")
parser.add_argument("--algorithm", action = "store", required = False, help = "blast algorithm (blastn)", default = "megablast")
parser.add_argument("--mlst", action = "store_true", required = False, help = "Turn it on to find MLST genes")
parser.add_argument("--incl_alt", action = "store_true", required = False, help = "Flag it to include all putative alternative calls for each allele")
parser.add_argument("--max_overlapping_nt", type = int, required = False, default = 0, help = "Maximal number of overlapping nucleotides allowed to treat two hits as physically separate")
parser.add_argument("--del_blast", action = "store_true", required = False, help = "Flag it to delete the text file of BLAST outputs")
return parser.parse_args()
def main():
args = get_arguments()
# Check and configure the runtime environment ###############
check_for_blast()
check_file_exists(args.gene_db)
check_algorithm(args.algorithm)
if args.outdir and not os.path.exists(args.outdir): # This logical statement becomes false when output_path = "".
os.makedirs(args.outdir)
report_best_hits = not args.incl_alt
unique_allele_symbols = determine_allele_symbol_uniqueness(args.gene_db) # return True of False
gene_db_name = os.path.splitext(os.path.basename(args.gene_db))[0]
# Run BLAST to determine the presence of alleles ###############
assemblies = {} # key = assembly_name, value = an Assembly object
assembly_names = []
cluster_names = set()
for assembly in args.assemblies: # for each FASTA file
assembly_name = rchop(os.path.basename(assembly), args.suffix) # eg. ERR08090_spades.fasta => ERR08090 given args.suffix = "_spades.fasta".
assembly_names.append(assembly_name)
# run BLAST and parse outputs line by line, returning a dictionary of clusters of the current assembly
clusters = blast_assembly(assembly = assembly, gene_db = args.gene_db, algorithm = args.algorithm, \
unique_allele_symbols = unique_allele_symbols, mlst_run = args.mlst, \
blast_out = os.path.join(args.outdir, "__".join([assembly_name, args.prefix, \
"blast", gene_db_name, "results.txt"])), \
del_blast = args.del_blast)
# filter hits of each cluster based on thresholds of query coverage and nucleotide divergence
for _, cluster in clusters.items():
cluster.filter_hits(args.min_coverage, args.max_divergence)
# organise remaining clusters into an Assembly object
if not assembly_name in list(assemblies.keys()):
assemblies[assembly_name] = Assembly(assembly_name, clusters, True) # create an Assembly object using non-empty clusters of filtered hits
# add cluster names of the current assembly to the overall set of names with duplicates removed
cluster_names.update(assemblies[assembly_name].cluster_names) # use the update method to append iterable values into a set
sorted_cluster_names = sorted(list(cluster_names))
sorted_assembly_names = sorted(assembly_names)
# Set up output files ###############
if args.report_new_consensus:
new_consensus_alleles = open(os.path.join(args.outdir, args.prefix + ".new_consensus_alleles.fasta"), "w") # file handle for consensus sequences of called variants
if args.report_all_consensus:
all_consensus_alleles = open(os.path.join(args.outdir, args.prefix + ".all_consensus_alleles.fasta"), "w") # file handle for consensus sequences of all called alleles
genotype_file = open(os.path.join(args.outdir, args.prefix + "__genes__" + gene_db_name + "__results.txt"), "w") # mimic the per-sample result from SRST2
# Write results into files ################
genotype_file.write("\t".join(["Sample"] + sorted_cluster_names) + "\n") # write the header line of the (merged) genotype file (for all samples)
for assembly in sorted_assembly_names:
line_fields = [assembly] # value for the first column in the current row
if report_best_hits:
""" Only report the best hit for each cluster, which is exactly the behaviour of SRST2. """
best_hits = assemblies[assembly].find_best_hits() # return a dictionary of Hit objects, each for a cluster; may return an empty dictionary but it does affect the algorithm.
clusters_present = list(best_hits.keys()) # clusters present in the current assembly; return [] when best_hits = {}
for cluster in sorted_cluster_names:
if cluster in clusters_present: # always return False when clusters_present = []
hit = best_hits[cluster] # a Hit object, which is the best hit within the current cluster
hit_seq = hit.hit_seq.replace("-", "") # remove signs of deletions from the consensus sequence
if len(hit) > 0: # len(hit) = 0 when there is no qualified (above the thresholds for query coverage and nucleotide identity) allele calls at all.
line_fields.append(hit.allele) # add an allele name for the current column
if args.report_all_consensus:
full_query_name = hit.query # such as 80__TetG_Tet__TetG__632
if hit.perfect_match:
full_query_name += ".consensus"
else:
full_query_name += ".variant"
add_fasta_to_file(full_query_name + " " + assembly, hit_seq, all_consensus_alleles)
if args.report_new_consensus and not hit.perfect_match: # only write consensus sequences of variants
add_fasta_to_file(hit.query + ".variant " + assembly, hit_seq, new_consensus_alleles)
else:
line_fields.append("-")
else: # when the current assembly does not have this cluster called
line_fields.append("-")
else:
""" Alternatively, report all physically separated hits per cluster, which yields multiple allele calls for each cluster. """
all_hits = assemblies[assembly].find_all_copies(args.max_overlapping_nt) # return a dictionary {cluster : [hit1, ..., hitn]}
clusters_present = list(all_hits.keys()) # equals [] when all_hits is an empty dictionary
for cluster in sorted_cluster_names:
if cluster in clusters_present: # False when clusters_present is an empty list
haps = merge_hits_by_haplotypes(all_hits[cluster]) # Command "all_hits[cluster]" returns a list of non-overlapping valid hits within this cluster.
if len(haps) > 0:
# determine the content for the current item in the genotype matrix
allele_names = [] # for the current column
# define a counter for variants of each allele
all_queries = set()
for hap in haps: # hap: a Hap namedtuple
all_queries.add(hap.rep_hit.query)
var_counts = {k : 0 for k in list(all_queries)} # define a dictionary with default values given a list of keys; {query : variant count}
for hap in haps: # go through every haplotype of the current cluster
if hap.copy_num > 1:
allele_name_suffix = "[" + str(hap.copy_num) + "]"
else:
allele_name_suffix = ""
allele_names.append(hap.rep_hit.allele + allele_name_suffix) # such as "AadA24_1609*[2]"
# count the number of variants
if not hap.rep_hit.perfect_match:
var_counts[hap.rep_hit.query] += 1
# write consensus sequences into a file
hap_seq = hap.rep_hit.hit_seq.replace("-", "")
if args.report_all_consensus:
full_query_name = hap.rep_hit.query # such as 80__TetG_Tet__TetG__632
if hap.rep_hit.perfect_match:
full_query_name += ".consensus"
else:
"""
Some alleles of the same cluster may have different names. Therefore, variant count only
appends to variants that share the same allele name.
"""
n = var_counts[hap.rep_hit.query]
if n > 1:
full_query_name += ".variant" + str(n)
else:
full_query_name += ".variant"
add_fasta_to_file(full_query_name + " " + assembly, hap_seq, all_consensus_alleles)
if args.report_new_consensus and not hap.rep_hit.perfect_match: # only write consensus sequences of variants
n = var_counts[hap.rep_hit.query]
if n > 1:
full_query_name = hap.rep_hit.query + ".variant" + str(n)
else:
full_query_name = hap.rep_hit.query + ".variant"
add_fasta_to_file(full_query_name + " " + assembly, hap_seq, new_consensus_alleles)
line_fields.append(",".join(allele_names)) # eg. "AadA24_1609*[2],AadA3*,AadA23[3]"
else:
line_fields.append("-")
else:
line_fields.append("-")
genotype_file.write("\t".join(line_fields) + "\n") # make one line for each assembly (sample) in the genotype profile
genotype_file.close()
if args.report_all_consensus:
all_consensus_alleles.close()
if args.report_new_consensus:
new_consensus_alleles.close()
return
# Run BLAST and parse its output for a given assembly
def blast_assembly(assembly, gene_db, algorithm, unique_allele_symbols, mlst_run, blast_out, del_blast):
check_file_exists(assembly)
# If the contigs are in a gz file, make a temporary decompressed FASTA file.
if get_compression_type(assembly) == "gz":
new_assembly = assembly + "_temp_decompress.fasta"
decompress_file(assembly, new_assembly)
assembly = new_assembly
temp_decompress = True
else:
temp_decompress = False
# Make the BLAST database if it doesn't already exist.
if not os.path.isfile(assembly + ".nin"):
makeblastdb_command = ["makeblastdb", "-dbtype", "nucl", "-in", assembly]
process = subprocess.Popen(makeblastdb_command, stdout = subprocess.PIPE, stderr = subprocess.PIPE)
_, err = process.communicate() # return bytes not strings
err = err.decode() # convert bytes into a string
if len(err) > 0:
print("\nmakeblastdb encountered an error:", file = sys.stderr)
print(err, file = sys.stderr)
quit()
"""
Run BLAST and fetch results from the subprocess handel for an assembly. Here, we align every allele in the database as a query against every subject ie. contigs.
sseq: aligned part of the subject sequence. In this application, it is the aligned part in a contig against a query sequence (a reference allele).
length: alignment length. The output may contain multiple lines for each allele.
"""
header = "qseqid sseqid sstart send pident qlen length bitscore sseq"
n_columns = header.count(" ") + 1
blastn_command = ["blastn", "-task", algorithm, "-db", assembly, "-query", gene_db, "-outfmt", "6 " + header]
process = subprocess.Popen(blastn_command, stdout = subprocess.PIPE, stderr = subprocess.PIPE)
out, err = process.communicate() # obtain outcomes (out and err) as two long strings (in bytes class though)
out = out.decode()
err = err.decode()
if len(err) > 0:
print("\nblastn encountered an error:", file = sys.stderr)
print(err, file = sys.stderr)
quit()
if not del_blast:
with open(blast_out, "w") as f:
f.write(header.replace(" ", "\t") + "\n")
f.write(out)
# Parse BLAST results line by line
clusters = {} # a dictionary of Cluster objects
for line in blast_results_iterator(out): # Each line is a hit.
n = line.count("\t") + 1
if n < n_columns: # ignore "no-hit" lines
continue
else:
query_name, subject_name, subject_start, subject_end, identity, query_length, hit_length, bit_score, hit_seq = line.split("\t")
if query_name.count("__") < 3:
print("Error: gene database names must be in the following format:", file = sys.stderr)
print("[clusterUniqueIdentifier]__[clusterSymbol]__[alleleSymbol]__[alleleUniqueIdentifier]", file = sys.stderr)
sys.exit(1)
"""
Extract fields from the query name. Eg. 74__TetD_Tet__TetD__1047 => [74, TetD_Tet, TetD, 1047].
cluster_name: gene name; seqid: an integer distinguishing alleles of the same allele_name.
"""
_, cluster_name, allele_name, seq_id = query_name.split("__")
if not unique_allele_symbols and not mlst_run:
allele_name += "_" + seq_id # eg. TetD => TetD_1047
# determine whether the current hit represents a perfect match
identity = float(identity)
coverage = float(hit_length) / float(query_length) * 100.0
is_imperfect_match = identity < 100.0 or coverage < 100.0
if is_imperfect_match:
allele_name += "*" # eg. TetD_1047 => TetD_1047*
# initialise an empty cluster object if the current cluster is new
if not cluster_name in list(clusters.keys()):
clusters[cluster_name] = Cluster(cluster_name, [])
"""
Append each line of the BLAST output as a named tuple to a list. The named tuple class Hit is defined
in the module parseBLAST. The query coverage may be greater than 100% when there are any insertions.
"""
hit = Hit(query = query_name, cluster = cluster_name, allele = allele_name, \
query_length = int(query_length), coverage = coverage, contig = subject_name, \
hit_length = int(hit_length), start = int(subject_start), end = int(subject_end), \
identity = identity, bit_score = float(bit_score), perfect_match = not is_imperfect_match, \
hit_seq = hit_seq)
clusters[cluster_name].add_hit(hit) # add this hit into a corresponding cluster
# If we"ve been working on a temporary decompressed file, delete it now.
if temp_decompress:
os.remove(assembly)
return clusters
# Chop a long string into elements of a generator based on newline characters. Ref: http://stackoverflow.com/questions/3054604/iterate-over-the-lines-of-a-string
def blast_results_iterator(results):
prevnl = -1 # not found
while True: # keep searchng for newline characters until reaching the last one
"""
The find method "returns the lowest index in the string where substring sub is found within the slice s[start : end]".
Here, the search starts from the position 0 in the first iteration.
"""
nextnl = results.find("\n", prevnl + 1)
if nextnl < 0: # after the last "\n" at the end of the string, or results do not have multiple lines at all
break # terminate the while loop
"""
The yield command makes the function to return a "generator" (data type), which can only be iterated once.
Every element in this generator corresponds to a line in the BLAST output.
"""
yield results[prevnl + 1 : nextnl] # extract all characters within a certain region defined by (prevnl + 1) and nextnl
prevnl = nextnl
return
def merge_hits_by_haplotypes(hits):
""" Identify haplotypes (hap) that a list of Hit objects (hits) represents """
haps = [] # a list of Hap objects
n = len(hits)
while n > 1:
hap = hits[0] # a Hit object
hits = [h for h in hits[1 : ] if h.hit_seq != hap.hit_seq] # filter out hits sharing the same sequence as the current hap
n_filtered = len(hits) # may equal zero when new hits = []
haps.append(Hap(rep_hit = hap, copy_num = n - n_filtered)) # Hap.rep_hit is a namedtuple as a value of another namedtuple.
n = n_filtered
# Python 3 does not allow the while...elif... syntax.
if n == 1: # for the last hit after filtering or hits consists of a single hit at the beginning
haps.append(Hap(rep_hit = hits[0], copy_num = 1))
return haps
# http://stackoverflow.com/questions/3663450/python-remove-substring-only-at-the-end-of-string
def rchop(thestring, ending):
if thestring.endswith(ending):
return thestring[ : -len(ending)]
return thestring
def add_fasta_to_file(name, seq, file): # Here, file is a handle.
file.write(">" + name + "\n")
file.write(seq + "\n")
return
def determine_allele_symbol_uniqueness(gene_db_filename):
"""
This function determines whether any two alleles in the gene database have
the same allele identifier. If this is the case, then every allele in the
results will have its allele identifier included.
It returns True if all allele names are unique and false if there is at
least one duplicate.
This mimics the behaviour of SRST2, which does the same.
"""
allele_names = set()
gene_db = open(gene_db_filename, "r")
for line in gene_db:
if not line.startswith(">"):
continue
name_parts = line.split()[0].split("__")
allele_name = name_parts[2]
if allele_name in allele_names:
return False
allele_names.add(allele_name)
return True
def check_for_blast():
makeblastdb_path = spawn.find_executable("makeblastdb")
blastn_path = spawn.find_executable("blastn")
blast_installed = (makeblastdb_path != None and blastn_path != None)
if not blast_installed:
sys.exit("Error: could not find BLAST program")
return
def check_file_exists(filename):
if not os.path.isfile(filename):
sys.exit("Error: could not load " + filename)
return
def check_algorithm(algorithm):
if not algorithm in ["blastn", "blastn-short", "megablast", "dc-megablast"]:
sys.exit("Error: algorithm must be blastn, blastn-short, megablast or dc-megablast")
return
def get_compression_type(filename):
"""
Attempts to guess the compression (if any) on a file using the first few bytes.
http://stackoverflow.com/questions/13044562
"""
magic_dict = {"gz": (b"\x1f", b"\x8b", b"\x08"),
"bz2": (b"\x42", b"\x5a", b"\x68"),
"zip": (b"\x50", b"\x4b", b"\x03", b"\x04")}
max_len = max(len(x) for x in magic_dict)
unknown_file = open(filename, "rb")
file_start = unknown_file.read(max_len)
unknown_file.close()
compression_type = "plain"
for file_type, magic_bytes in list(magic_dict.items()):
if file_start.startswith(magic_bytes):
compression_type = file_type
if compression_type == "bz2":
sys.exit("cannot use bzip2 format - use gzip instead")
if compression_type == "zip":
sys.exit("cannot use zip format - use gzip instead")
return compression_type
def decompress_file(in_file, out_file): # output_file is another file handle.
with gzip.GzipFile(in_file, "rb") as i, open(out_file, "wb") as o:
s = i.read()
o.write(s)
return
if __name__ == "__main__": # Execute the main function when this script is not imported as a module.
main()