-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreaders.py
263 lines (207 loc) · 9.24 KB
/
readers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Provides readers configured for different datasets."""
import sys
import utils
import tensorflow as tf
from tensorflow import logging
from tensorflow import flags
FLAGS = flags.FLAGS
flags.DEFINE_bool("use_data_augmentation", False,
"Whether to augmenting images before apply them.")
class BaseReader(object):
"""Inherit from this class when implementing new readers."""
def prepare_reader(self, unused_filename_queue):
"""Create a thread for generating prediction and label tensors."""
raise NotImplementedError()
def image_augmentation(image, mask):
"""Returns (maybe) augmented images
(1) Random flip (left <--> right)
(2) Random flip (up <--> down)
(3) Random brightness
(4) Random hue
Args:
image (3-D Tensor): Image tensor of (H, W, C)
mask (3-D Tensor): Mask image tensor of (H, W, 1)
Returns:
image: Maybe augmented image (same shape as input `image`)
mask: Maybe augmented mask (same shape as input `mask`)
"""
concat_image = tf.concat([image, tf.cast(tf.expand_dims(mask, axis=2), tf.uint8)], axis=-1)
maybe_flipped = tf.image.random_flip_left_right(concat_image)
image = maybe_flipped[:, :, :-1]
mask = tf.cast(maybe_flipped[:, :, -1], tf.bool)
image = tf.image.random_brightness(image, 0.1)
image = tf.image.random_hue(image, 0.1)
return image, mask
class CarvanaFeatureReader(BaseReader):
"""Reads TFRecords of pre-aggregated Examples.
The TFRecords must contain Examples with a sparse int64 'labels' feature and
a fixed length float32 feature, obtained from the features in 'feature_name'.
The float features are assumed to be an average of dequantized values.
"""
def __init__(self,
width=1918,
height=1280,
channels=3):
"""Construct a CarvanaFeatureReader.
Args:
num_classes: a positive integer for the number of classes.
feature_sizes: positive integer(s) for the feature dimensions as a list.
feature_names: the feature name(s) in the tensorflow record as a list.
"""
self.width = width
self.height = height
self.channels = channels
def prepare_reader(self, filename_queue, batch_size=16):
"""Creates a single reader thread for .
Args:
filename_queue: A tensorflow queue of filename locations.
Returns:
A tuple of video indexes, features, labels, and padding data.
"""
reader = tf.TFRecordReader()
_, serialized_examples = reader.read(filename_queue)
feature_map = {"id": tf.FixedLenFeature([], tf.string),
"image": tf.FixedLenFeature([], tf.string),
"mask": tf.FixedLenFeature([], tf.string)}
features = tf.parse_single_example(serialized_examples, features=feature_map)
print >> sys.stderr, " features", features
image_id = features["id"]
image_data = features["image"]
image_mask = features["mask"]
print >> sys.stderr, " image_id", image_id
print >> sys.stderr, " image_data", image_data
print >> sys.stderr, " image_mask", image_mask
# reshape to rank1
image_id = tf.reshape(image_id, shape=[1])
# [height, width, channels]
image_data = tf.image.decode_jpeg(image_data, channels=3)
# image_data.set_shape(self.height * self.width * self.channels)
image_data = tf.reshape(image_data, shape=[self.height, self.width, self.channels])
print >> sys.stderr, " image_data", image_data
# [height, width]
image_mask = tf.decode_raw(image_mask, tf.uint8)
image_mask.set_shape(self.height * self.width)
image_mask = tf.reshape(image_mask, shape=[self.height, self.width])
image_mask = tf.greater(image_mask, 0)
print >> sys.stderr, " image_mask", image_mask
# image augmentation
if hasattr(FLAGS, "use_data_augmentation") and FLAGS.use_data_augmentation:
image_data, image_mask = image_augmentation(image_data, image_mask)
image_data = tf.reshape(image_data, shape=[1, self.height, self.width, self.channels])
image_mask = tf.reshape(image_mask, shape=[1, self.height, self.width])
return image_id, image_data, image_mask
class CarvanaPredictionFeatureReader(BaseReader):
"""Reads TFRecords of pre-aggregated Examples.
The TFRecords must contain Examples with a sparse int64 'labels' feature and
a fixed length float32 feature, obtained from the features in 'feature_name'.
The float features are assumed to be an average of dequantized values.
"""
def __init__(self,
width=1918,
height=1280,
channels=3):
"""Construct a CarvanaFeatureReader.
Args:
num_classes: a positive integer for the number of classes.
feature_sizes: positive integer(s) for the feature dimensions as a list.
feature_names: the feature name(s) in the tensorflow record as a list.
"""
self.width = width
self.height = height
self.channels = channels
def prepare_reader(self, filename_queue, batch_size=16):
"""Creates a single reader thread for .
Args:
filename_queue: A tensorflow queue of filename locations.
Returns:
A tuple of video indexes, features, labels, and padding data.
"""
reader = tf.TFRecordReader()
_, serialized_examples = reader.read(filename_queue)
feature_map = {"id": tf.FixedLenFeature([], tf.string),
"image": tf.FixedLenFeature([], tf.string),
"mask": tf.FixedLenFeature([], tf.string)}
features = tf.parse_single_example(serialized_examples, features=feature_map)
print >> sys.stderr, " features", features
image_id = features["id"]
image_data = features["image"]
image_mask = features["mask"]
print >> sys.stderr, " image_id", image_id
print >> sys.stderr, " image_data", image_data
print >> sys.stderr, " image_mask", image_mask
# reshape to rank1
image_id = tf.reshape(image_id, shape=[1])
# [height, width, channels]
image_data = tf.decode_raw(image_data, tf.uint8)
image_data.set_shape(self.height * self.width * self.channels)
image_data = tf.reshape(image_data, shape=[self.height, self.width, self.channels])
print >> sys.stderr, " image_data", image_data
# [height, width]
image_mask = tf.decode_raw(image_mask, tf.uint8)
image_mask.set_shape(self.height * self.width)
image_mask = tf.reshape(image_mask, shape=[self.height, self.width])
image_mask = tf.greater(image_mask, 0)
print >> sys.stderr, " image_mask", image_mask
# image augmentation
if hasattr(FLAGS, "use_data_augmentation") and FLAGS.use_data_augmentation:
image_data, image_mask = image_augmentation(image_data, image_mask)
image_data = tf.reshape(image_data, shape=[1, self.height, self.width, self.channels])
image_mask = tf.reshape(image_mask, shape=[1, self.height, self.width])
return image_id, image_data, image_mask
class CarvanaTestFeatureReader(BaseReader):
"""Reads TFRecords of pre-aggregated Examples.
The TFRecords must contain Examples with a sparse int64 'labels' feature and
a fixed length float32 feature, obtained from the features in 'feature_name'.
The float features are assumed to be an average of dequantized values.
"""
def __init__(self,
width=1918,
height=1280,
channels=3):
"""Construct a CarvanaFeatureReader.
Args:
num_classes: a positive integer for the number of classes.
feature_sizes: positive integer(s) for the feature dimensions as a list.
feature_names: the feature name(s) in the tensorflow record as a list.
"""
self.width = width
self.height = height
self.channels = channels
def prepare_reader(self, filename_queue, batch_size=16):
"""Creates a single reader thread for .
Args:
filename_queue: A tensorflow queue of filename locations.
Returns:
A tuple of video indexes, features, labels, and padding data.
"""
reader = tf.TFRecordReader()
_, serialized_examples = reader.read(filename_queue)
feature_map = {"id": tf.FixedLenFeature([], tf.string),
"image": tf.FixedLenFeature([], tf.string)}
features = tf.parse_single_example(serialized_examples, features=feature_map)
print >> sys.stderr, " features", features
image_id = features["id"]
image_data = features["image"]
print >> sys.stderr, " image_id", image_id
print >> sys.stderr, " image_data", image_data
# reshape to rank1
image_id = tf.reshape(image_id, shape=[1])
# [height, width, channels]
image_data = tf.image.decode_jpeg(image_data, channels=3)
# image_data.set_shape(self.height * self.width * self.channels)
image_data = tf.reshape(image_data, shape=[1, self.height, self.width, self.channels])
print >> sys.stderr, " image_data", image_data
return image_id, image_data