-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
63 lines (48 loc) · 1.59 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from pathlib import Path
import torch
import torchvision
from torch import nn, optim
from torchvision import transforms
from ml_model_kit import engine, data_setup, model_builder, utils
if __name__ == "__main__":
print(f"PyTorch version: {torch.__version__}")
print(f"torchvision version: {torchvision.__version__}")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
BATCH_SIZE = 16
data_path = Path("processed/")
train_dir = data_path / "train"
test_dir = data_path / "test"
data_transform = transforms.Compose(
[
transforms.Resize((512, 512)),
transforms.RandomHorizontalFlip(p=0.5),
transforms.ToTensor(),
]
)
train_dataloader, test_dataloader, _, class_names = (
data_setup.create_dataloaders(
train_dir, test_dir, data_transform, BATCH_SIZE
)
)
model_res = model_builder.ResNet18(
3, resblock=model_builder.ResBlock, outputs=len(class_names)
).to(device)
NUM_EPOCHS = 10
print(f"Using model: {model_res.name}")
loss_fn = nn.CrossEntropyLoss()
optimizer = optim.Adam(params=model_res.parameters(), lr=0.0001)
results = engine.train(
model=model_res,
train_dataloader=train_dataloader,
test_dataloader=test_dataloader,
optimizer=optimizer,
loss_fn=loss_fn,
epochs=NUM_EPOCHS,
device=device,
)
utils.save_model(
model=model_res,
target_dir="models",
model_name="sight-seer_res18_512pixelimage_80epochs_newdataset.pth",
)