-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreal_gt.py
112 lines (88 loc) · 3.44 KB
/
real_gt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
"""
Script for detecting and marking moments of drift for real-world datastreams.
"""
import numpy as np
import strlearn as sl
import matplotlib.pyplot as plt
from sklearn.naive_bayes import GaussianNB
from sklearn.neural_network import MLPClassifier
from tqdm import tqdm
from utils import ELMI
real_streams = [
'data/real_streams/covtypeNorm-1-2vsAll-pruned.arff',
'data/real_streams/electricity.npy',
'data/real_streams/poker-lsn-1-2vsAll-pruned.arff',
'data/real_streams/INSECTS-abrupt_imbalanced_norm.arff',
'data/real_streams/INSECTS-gradual_imbalanced_norm.arff',
'data/real_streams/INSECTS-incremental_imbalanced_norm.arff'
]
stream_static = { 'chunk_size': 300 }
pbar = tqdm(total=len(real_streams))
for f_id, f in enumerate(real_streams):
out = []
fname=(f.split('/')[2]).split('.')[0]
if 'npy' in f:
stream = sl.streams.NPYParser(f, chunk_size=stream_static['chunk_size'], n_chunks=100000)
else:
stream = sl.streams.ARFFParser(f, chunk_size=stream_static['chunk_size'], n_chunks=100000)
X_all = []
y_all = []
for chunk in range(100000):
# Pruning
try:
X, y = stream.get_chunk()
except Exception as e:
print(e)
break
if len(X_all)>0:
if X.shape != X_all[-1].shape:
continue
if len(np.unique(y))<2:
print('skip', chunk, fname)
continue
X_all.append(X)
y_all.append(y)
_chunks = len(y_all)
print(_chunks)
# X_all = np.array(X_all)
# y_all = np.array(y_all)
# X_all = X_all.reshape(-1, X_all.shape[-1])
# y_all = y_all.flatten()
# print(X_all.shape)
# print(y_all.shape)
# all = np.concatenate((X_all, y_all[:,None]), axis=1)
# print(all.shape)
# np.save('real_streams_pr/%s.npy' % fname, all)
print(fname)
stream = sl.streams.NPYParser('data/real_streams_pr/%s.npy' % fname, chunk_size=stream_static['chunk_size'], n_chunks=_chunks)
if f_id==0:
drfs=[57,121,131,155,205,260,295,350]
if f_id==1:
drfs=[20,38,55,115,145]
if f_id==2:
drfs=[45,90,110,120,160,182,245,275,292,320,358,400,450,468,480,516,540,550,590,600,640,710,790,831,850,880,900,920,965,1000,1010]
if f_id==3:
drfs=[125]
if f_id==4:
drfs=[9,60,90,125,190]
if f_id==5:
drfs=[9,35,60,180,220]
clf = [GaussianNB(), MLPClassifier(), ELMI()]
evaluator = sl.evaluators.TestThenTrain()
evaluator.process(stream, clf)
fig, ax = plt.subplots(2,1,figsize=(14,7))
for i in range(len(clf)):
ax[0].scatter(np.arange(len(evaluator.scores[i,:,1])),evaluator.scores[i,:,1], alpha=0.9, label=['GNB', 'MLP', 'ELM'][i], c=['blue', 'gold', 'tomato'][i],s=3)
ax[1].plot(evaluator.scores[i,:,1], alpha=0.7, label=['GNB', 'MLP', 'ELM'][i], c=['blue', 'gold', 'tomato'][i],lw = 1 if f_id==2 else 2)
for aa in ax:
aa.spines['top'].set_visible(False)
aa.spines['right'].set_visible(False)
aa.set_ylabel('BAC')
aa.legend(frameon=False)
aa.grid(ls=':')
aa.set_xticks(drfs, drfs, rotation=90)
ax[-1].set_xlabel('chunk')
plt.tight_layout()
plt.savefig('data/real_streams_gt/%s.png' % fname)
np.save('data/real_streams_gt/%s.npy' % fname, drfs)
np.save('data/real_streams_gt/clf_%s.npy' % fname, evaluator.scores)