diff --git a/vortex-filtering/include/vortex_filtering/filters/ukf.hpp b/vortex-filtering/include/vortex_filtering/filters/ukf.hpp index 8fb51c6e..f39b4a00 100644 --- a/vortex-filtering/include/vortex_filtering/filters/ukf.hpp +++ b/vortex-filtering/include/vortex_filtering/filters/ukf.hpp @@ -66,11 +66,11 @@ template ; using Gauss_z = prob::MultiVarGauss; - static constexpr int N_DIM_a = N_DIM_x + N_DIM_v + N_DIM_w; // Augmented state dimension - static constexpr size_t N_SIGMA_POINTS = 2 * N_DIM_a + 1; // Number of sigma points + static constexpr int N_DIM_a = N_DIM_x + N_DIM_v + N_DIM_w; // Augmented state dimension + static constexpr size_t N_SIGMA_POINTS = 2 * N_DIM_a + 1; // Number of sigma points - using Vec_a = Eigen::Vector; // Augmented state vector - using Mat_aa = Eigen::Matrix; // Augmented state covariance matrix + using Vec_a = Eigen::Vector; // Augmented state vector + using Mat_aa = Eigen::Matrix; // Augmented state covariance matrix using Mat_x2ap1 = Eigen::Matrix; // Matrix for sigma points of x using Mat_z2ap1 = Eigen::Matrix; // Matrix for sigma points of z using Mat_a2ap1 = Eigen::Matrix; // Matrix for sigma points of a @@ -100,7 +100,6 @@ template cl Gauss_v v = {Vec_v::Zero(), Q_d(dt, x)}; return f_d(dt, x, u, v.sample(gen)); } - }; /** diff --git a/vortex-filtering/include/vortex_filtering/probability/poisson.hpp b/vortex-filtering/include/vortex_filtering/probability/poisson.hpp index b38cb58f..493addf5 100644 --- a/vortex-filtering/include/vortex_filtering/probability/poisson.hpp +++ b/vortex-filtering/include/vortex_filtering/probability/poisson.hpp @@ -45,10 +45,7 @@ class Poisson { * @param x * @return double factorial */ - static constexpr double factorial(int x) - { - return (x == 1 || x == 0) ? 1 : factorial(x - 1) * x; - } + static constexpr double factorial(int x) { return (x == 1 || x == 0) ? 1 : factorial(x - 1) * x; } }; } // namespace vortex::prob