-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path6. LDAfitbyyear_server.R
150 lines (120 loc) · 4.01 KB
/
6. LDAfitbyyear_server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
memory.limit(size = 17500000000000)
require(data.table)
require(dplyr)
require(lubridate)
require(tm)
require(topicmodels)
prepare_prosp <- function(text){
require(qdapDictionaries)
require(stringr)
text <- tolower(text)
text <- gsub("\\d+", "", text)
text <- unlist(str_extract_all(text, "\\w+"))
text <- text[text %in% GradyAugmented]
text <- text[str_length(text) > 2]
text <- text[!text %in% c(stopwords("english"))]
text <- text[text %in% lda.trained@terms]
text <- paste0(text, collapse = " ")
return(text)
}
require(parallel)
mclapply.hack <- function(...) {
## Create a cluster
## ... How many workers do you need?
## ... N.B. list(...)[[1]] returns the first
## argument passed to the function. In
## this case it is the list to iterate over
size.of.list <- length(list(...)[[1]])
cl <- makeCluster( min(size.of.list, detectCores()) )
## Find out the names of the loaded packages
loaded.package.names <- c(
## Base packages
sessionInfo()$basePkgs,
## Additional packages
names( sessionInfo()$otherPkgs ))
## N.B. tryCatch() allows us to properly shut down the
## cluster if an error in our code halts execution
## of the function. For details see: help(tryCatch)
tryCatch( {
## Copy over all of the objects within scope to
## all clusters.
##
## The approach is as follows: Beginning with the
## current environment, copy over all objects within
## the environment to all clusters, and then repeat
## the process with the parent environment.
##
this.env <- environment()
while( identical( this.env, globalenv() ) == FALSE ) {
clusterExport(cl,
ls(all.names=TRUE, env=this.env),
envir=this.env)
this.env <- parent.env(environment())
}
## repeat for the global environment
clusterExport(cl,
ls(all.names=TRUE, env=globalenv()),
envir=globalenv())
## Load the libraries on all the clusters
## N.B. length(cl) returns the number of clusters
parLapply( cl, 1:length(cl), function(xx){
lapply(loaded.package.names, function(yy) {
## N.B. the character.only option of
## require() allows you to give the
## name of a package as a string.
require(yy , character.only=TRUE)})
})
## Run the lapply in parallel
return( parLapply( cl, ...) )
}, finally = {
## Stop the cluster
stopCluster(cl)
})
}
ldafit <- function(i)
{
out <- posterior(lda.trained, dtm[i,])$topic
return(out)
}
lda.trained <- "M:/evolkova/Dropbox/Projects/Govt Agenda/Data/LDA_Data/lda_random_sample_topics100.rds" %>%
readRDS
outfolder <- "M:/evolkova/Dropbox/Projects/Govt Agenda/Data/LDA_Data/"
for(yr in 2000)
{
print(yr)
print(Sys.time())
dtm.name <- yr %>%
paste0(outfolder, "dtm_random_sample_topics100_",.,"_server.rds")
lda.name <- yr %>%
paste0(outfolder, "lda_random_sample_topics100_",.,".csv")
sample <- yr %>%
paste0("M:/evolkova/Dropbox/Projects/Govt Agenda/Data/Master and Texts/",.,".rds") %>%
readRDS
alltexts <- mclapply.hack(sample$texts, prepare_prosp)
#create corpus from vector
docs <- alltexts %>% tolower %>% VectorSource %>% Corpus
#remove stopwords
docs <- tm_map(docs, removeWords, stopwords("english"))
#remove whitespace
docs <- tm_map(docs, stripWhitespace)
#Stem document
require(SnowballC)
docs <- tm_map(docs, stemDocument)
#Create document-term matrix
dtm <- DocumentTermMatrix(docs)
#convert rownames to filenames
rownames(dtm) <- sample$document_number
ui = unique(dtm$i)
dtm = dtm[ui,]
saveRDS(dtm, dtm.name)
Ndocs <- dim(dtm)[1]
print(yr)
print(Sys.time())
print(Ndocs)
res <- mclapply.hack(1:Ndocs,ldafit)
out <- NULL
for(i in 1:length(res)) out <- rbind(out, data.frame(res[[i]], filename = rownames(res[[i]])))
colnames(out)[1:100] <- paste0("Topic", 1:100)
rownames(out) <- NULL
fwrite(out, lda.name)
}