-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
147 lines (128 loc) · 5.03 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from wrappers import wrap_game
from torch.optim.lr_scheduler import ExponentialLR
from torch.optim import SGD, RMSprop, Adam, AdamW
from torch.nn import MSELoss, LogSoftmax, SmoothL1Loss
from networks import MuZeroNetwork, FCNetwork, TinyNetwork, HopfieldNetwork, AttentionNetwork
import numpy as np
import random
import torch
import gym
def get_environment(config):
if config.environment == 'TicTacToe':
from custom_environments.tic_tac_toe import TicTacToe
environment = TicTacToe()
elif config.environment == 'AT':
from custom_environments.AT import ATEnv
environment = ATEnv()
else:
environment = gym.make(config.environment)
environment = wrap_game(environment, config)
return environment
def get_network(config, device=None):
if device is None:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
env = get_environment(config)
action_space = env.action_space.n
if config.architecture == 'MuZeroNetwork':
input_channels = config.stack_obs
if config.stack_actions:
input_channels *= 2
network = MuZeroNetwork(input_channels, action_space, device, config)
elif config.architecture == 'TinyNetwork':
input_channels = config.stack_obs
if config.stack_actions:
input_channels *= 2
network = TinyNetwork(input_channels, action_space, device, config)
elif config.architecture == 'FCNetwork':
input_dim = np.prod(env.observation_space.shape)
network = FCNetwork(input_dim, action_space, device, config)
elif config.architecture == 'HopfieldNetwork':
input_dim = np.prod(env.observation_space.shape)
network = HopfieldNetwork(input_dim, action_space, device, config)
elif config.architecture == 'AttentionNetwork':
input_dim = env.observation_space.shape
if len(input_dim) == 1:
input_dim = input_dim[0]
network = AttentionNetwork(input_dim, action_space, device, config)
else:
raise NotImplementedError
return network
def get_loss_functions(config):
def cross_entropy_loss(policy_logits, target_policy):
loss = (-target_policy * LogSoftmax(dim=1)(policy_logits)).sum(1)
return loss
if config.policy_loss == 'CrossEntropyLoss':
policy_loss = cross_entropy_loss
else:
raise NotImplementedError
if not config.no_support:
scalar_loss = policy_loss
else:
if config.scalar_loss == 'MSE':
scalar_loss = MSELoss(reduction='none')
elif config.scalar_loss == 'Huber':
scalar_loss = SmoothL1Loss(reduction='none')
else:
raise NotImplementedError
return scalar_loss, policy_loss
def get_optimizer(config, parameters):
if config.optimizer == 'RMSprop':
optimizer = RMSprop(parameters, lr=config.lr_init, momentum=config.momentum, eps=0.01, weight_decay=config.weight_decay)
elif config.optimizer == 'Adam':
optimizer = Adam(parameters, lr=config.lr_init, weight_decay=config.weight_decay, eps=0.00015)
elif config.optimizer == 'AdamW':
optimizer = AdamW(parameters, lr=config.lr_init, weight_decay=config.weight_decay, eps=0.00015)
elif config.optimizer == 'SGD':
optimizer = SGD(parameters, lr=config.lr_init, momentum=config.momentum, weight_decay=config.weight_decay)
else:
raise NotImplementedError
return optimizer
class MuZeroLR():
def __init__(self, optimizer, config):
self.optimizer = optimizer
self.lr_decay_steps = config.lr_decay_steps
self.lr_decay_rate = config.lr_decay_rate
self.lr_init = config.lr_init
self.lr_step = 0
self.lr = self.lr_init
def step(self):
self.lr_step += 1
self.lr = self.lr_init * self.lr_decay_rate ** (self.lr_step / self.lr_decay_steps)
for param_group in self.optimizer.param_groups:
param_group["lr"] = self.lr
class WarmUpLR():
def __init__(self, optimizer, config):
self.optimizer = optimizer
self.max_lr = config.lr_init
self.warm_up_steps = 5000
self.lr_step = 0
self.lr = (1 / self.warm_up_steps) * self.max_lr
for param_group in self.optimizer.param_groups:
param_group["lr"] = self.lr
def step(self):
self.lr_step += 1
if self.lr_step <= self.warm_up_steps:
self.lr = (self.lr_step / self.warm_up_steps) * self.max_lr
for param_group in self.optimizer.param_groups:
param_group["lr"] = self.lr
def get_lr_scheduler(config, optimizer):
if config.lr_scheduler is None:
return None
if config.lr_scheduler == 'ExponentialLR':
lr_scheduler = ExponentialLR(optimizer, config.lr_decay_rate)
elif config.lr_scheduler == 'MuZeroLR':
lr_scheduler = MuZeroLR(optimizer, config)
elif config.lr_scheduler == 'WarmUpLR':
lr_scheduler = WarmUpLR(optimizer, config)
else:
raise NotImplementedError
return lr_scheduler
def set_all_seeds(seed=None):
if seed is None:
seed = random.randint(0, 1000)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed+1)
random.seed(seed+2)
np.random.seed(seed+3)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False