-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdataset.py
121 lines (107 loc) · 4.62 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
import h5py
import hdf5storage
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
from torch.autograd import Variable
import torchvision.transforms as transforms
import torch.optim as optim
import pandas as pd
import torchvision.models as models_res
import matplotlib.pyplot as plt
import cv2
import math
import itertools
import datetime
import time
import pandas as pd
import random
import matplotlib.pyplot as plt
import seaborn as sns
seed = 100
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
def load_checkpoint(file,model,optimizer,best_prec1=None):
if os.path.isfile(file):
print("=> loading checkpoint '{}'".format(file))
checkpoint = torch.load(file)
start_epoch = checkpoint['epoch']
# best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(file, checkpoint['epoch']))
return start_epoch
else:
print("=> no checkpoint found at '{}'".format(file))
return 0
def make_variable(tensor,volatile=False):
"""Convert Tensor to Variable."""
if torch.cuda.is_available():
tensor = tensor.cuda()
return Variable(tensor, volatile=volatile)
class MeanCovDataset(data.Dataset):
def __init__(self, mat_file,test_dataset=False,transform=None, generalized = False):
mat = hdf5storage.loadmat(mat_file)
self.test_bool = test_dataset
# Loading training data: From mat format to dictionary
# ( Train_Classes_Size, 1)
self.trainClassLabels= mat['trainClassLabels'].astype(int)
# ( Test_Classes_Size, 1)
self.testClassLabels= mat['testClassLabels'].astype(int)
# 40 for Awa
self.train_class_dim= len( self.trainClassLabels )
# 10 for Awa
self.test_class_dim= len( self.testClassLabels )
# Feat is (D*N)
self.TestData= np.array( mat['test_feat'], dtype='float32' ).T
if case==4:
self.AttributeData= np.float32(np.load('FinalWeights/cub_attributes_reed.npy'))
else:
self.AttributeData= np.array( mat['classAttributes'], dtype='float32' ).T # C*D
self.TrainData= np.array( mat['train_feat'], dtype='float32' ).T # N*D shape, thats why tranpose
self.TrainLabels= np.array( mat['train_labels'] ) #N*1
self.TestLabels= np.array( mat['test_labels'] )
self.AttributeDim= np.array( mat['classAttributes']).shape[0]
[self.FeatureDim, self.TrainSize]= np.array( mat['train_feat'] ).shape
self.transform = transform
if generalized:
indices = np.random.choice(self.TrainSize, int(self.TrainSize/5), replace=False)
self.TestData = np.concatenate((self.TestData,self.TrainData[indices]),axis=0)
self.TestLabels = np.concatenate((self.TestLabels,self.TrainLabels[indices]),axis=0)
self.TrainData = np.delete(self.TrainData, indices, 0)
self.TrainLabels = np.delete(self.TrainLabels, indices, 0)
self.TrainSize = len(self.TrainData)
self.trainClassLabels= np.unique(self.TrainLabels)
self.testClassLabels= np.unique(self.TrainLabels)
self.train_class_dim= len( self.trainClassLabels )
self.test_class_dim= len( self.testClassLabels )
def __len__(self):
if (not self.test_bool):
return self.TrainSize
else:
return len(self.TestData)
def __getitem__(self, idx):
if( not self.test_bool):
x_n = self.TrainData[idx,:]
class_label = int( self.TrainLabels[idx] )
label_index = None
else:
x_n = self.TestData[idx,:]
class_label = int( self.TestLabels[idx] )
label_index = np.argwhere(test_dataset.testClassLabels == class_label)[0][0]
class_attribute = self.AttributeData[class_label-1,:]
sample = {'feature': x_n, 'class_label': class_label,'attribute': class_attribute,'label_index':label_index}
if self.transform:
sample['feature'] = self.transform(sample['feature'])
sample['class_label'] = self.transform(sample['class_label'])
sample['attribute'] = self.transform(sample['attribute'])
return sample