-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtime_to_jd.py
52 lines (42 loc) · 1.8 KB
/
time_to_jd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
def time_to_jd(path,filename):
files=sorted(glob(os.path.join(dir,filename)))
nof=np.zeros(len(files))
for i in range(0,len(files)):
data=fits.open(files[i])
header=data[0].header
image=data[0].data
k=np.shape(image)
nof[i]=k[0]
check_header=header['ACQMODE']
if (check_header=='Single Scan'):
jd_up=image
time=header['DATE']
t=Time(time,format='isot',scale='utc')
time_jd=t.jd
header.insert(15,('JD',time_jd))
files[i]
mod_file_1=files[i].replace('.fits','')
fits.writeto(mod_file_1+'_sliced_'+'.fits',jd_up,header,overwrite=True)
#print(files[i],t.jd,t.mjd,'single scan image')
elif (check_header=='Kinetics'):
exposure=header['EXPOSURE']
print('kinetic mode image with no. of files:',files[i])
name_of_file=files[i]
mod_file=name_of_file.replace('.fits','')
time=header['DATE']
#print(time)
t=Time(time,format='isot',scale='utc')
tim=t.jd
temp=int(nof[i])
mod_jd=np.zeros(temp)
exp_time=header['EXPOSURE']
exp_time=exp_time/86400 # for the 'day' from seconds calculation.
mod_jd[0]=tim
for j in range(1,temp):
mod_jd[j]=mod_jd[j-1]+exp_time
for k in range(0,len(mod_jd)):
sliced_image=image[k]
time_jd=mod_jd[k]
header.insert(15,('JD',time_jd))
fits.writeto(mod_file+'_sliced_%g'%k+'.fits',sliced_image,header,overwrite=True)
print(mod_file+'_sliced_%g'%k+'.fits has been written')