-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain_main_parallel.py
292 lines (231 loc) · 11.2 KB
/
pretrain_main_parallel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import argparse
import datetime
import json
import yaml
import numpy as np
import os
import os.path as osp
import time
from pathlib import Path
import sys
import random
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
import timm
import timm.optim.optim_factory as optim_factory
import util.misc as misc
# from util.misc import NativeScalerWithGradNormCountBalanceLoss as NativeScaler
from util.misc import NativeScalerWithGradNormCount as NativeScaler
from pretrain_engine_basic import train_one_epoch
import torch.multiprocessing as mp
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group
from torchinfo import summary
def import_class(name):
components = name.split('.')
mod = __import__(components[0]) # import return model
for comp in components[1:]:
mod = getattr(mod, comp)
return mod
def get_args_parser():
parser = argparse.ArgumentParser('ParallelFormer Pre-training', add_help=False)
parser.add_argument('--config', default='./config/ntu60_xsub_pretrain_parallel.yaml', help='path to the configuration file')
parser.add_argument('--batch_size', default=6, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch')
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
parser.add_argument('--debug', default=False, type=bool,
help='Debug the code or not')
# Model parameters
parser.add_argument('--model', default='SpatialFormer', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--model_args', default=dict(), help='the arguments of model')
parser.add_argument('--mask_ratio', default=0.90, type=float,
help='Masking ratio (percentage of removed joints).')
parser.add_argument('--motion_stride', default=1, type=float,
help='')
parser.add_argument('--motion_aware_tau', default=0.80, type=float,
help='')
parser.add_argument('--mask_ratio_inter', default=0.75, type=float,
help='Masking ratio inter (percentage of removed joints).')
parser.add_argument('--mask_ratio_intra', default=0.80, type=float,
help='Masking ratio intra (percentage of removed joints).')
parser.add_argument('--norm_skes_loss', default=True, type=bool,
help='')
# Optimizer parameters
parser.add_argument('--enable_amp', action='store_true', default=False,
help='Enabling automatic mixed precision')
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=10, metavar='N',
help='epochs to warmup LR')
parser.add_argument('--balanceLoss', type=bool, default=False,
help='')
# Dataset parameters
parser.add_argument('--feeder', default='feeder.feeder_ntu', help='data loader will be used')
parser.add_argument('--train_feeder_args', default=dict(), help='the arguments of data loader for training')
parser.add_argument('--output_dir', default='./output_dir',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='./output_dir',
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--num_workers', default=1, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
return parser
def ddp_setup(rank, world_size, args):
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12355"
args.distributed = True
init_process_group(backend="nccl", rank=rank, world_size=world_size)
def main(rank, world_size, args):
ddp_setup(rank, world_size, args)
torch.cuda.set_device(rank)
if rank==0:
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
# Load dataset
Feeder = import_class(args.feeder)
dataset_train = Feeder(**args.train_feeder_args)
if args.debug:
subset_indices = list(range(int(len(dataset_train)/400)))
dataset_train = torch.utils.data.Subset(dataset_train, subset_indices)
if args.distributed:
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
if global_rank == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.log_dir)
else:
log_writer = None
def worker_init_fn(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
# num_workers=args.num_workers,
worker_init_fn=worker_init_fn,
pin_memory=args.pin_mem,
drop_last=True,
)
if global_rank == 0:
print('Train Dataset size: ', len(data_loader_train.dataset))
# # define the model
Model = import_class(args.model)
model = Model(**args.model_args)
model.to(device)
model_without_ddp = model
if rank == 0:
summary_info = summary(model_without_ddp, [(8, 3, 100, 25, 2)])
with open(osp.join(args.output_dir, 'model_summary.txt'), 'w') as f:
f.write(str(summary_info))
with open(osp.join(args.output_dir, 'model_summary.txt'), 'a') as f:
sys.stdout = f
print(model_without_ddp)
sys.stdout = sys.__stdout__
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
if global_rank == 0:
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[global_rank], find_unused_parameters=True)
model_without_ddp = model.module
# model._set_static_graph()
param_groups = optim_factory.param_groups_layer_decay(model_without_ddp, args.weight_decay)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
loss_scaler = NativeScaler()
if os.path.isfile(args.resume):
misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)
else:
if global_rank == 0:
print("Start from scratch")
if global_rank == 0:
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
train_stats = train_one_epoch(
model, data_loader_train,
optimizer, device, epoch, loss_scaler,
log_writer=log_writer,
args=args
)
if args.output_dir and ((epoch+1) % 20 == 0 or epoch == 0):
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch)
misc.save_model_latest(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,}
if args.output_dir and misc.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
if global_rank == 0:
print('Training time {}'.format(total_time_str))
destroy_process_group()
if __name__ == '__main__':
parser = get_args_parser()
p = parser.parse_args()
if p.config is not None:
with open(p.config, 'r') as f:
default_args = yaml.load(f, yaml.FullLoader)
key = vars(p).keys()
invalid_keys = []
for k in default_args.keys():
if k not in key:
invalid_keys.append(k)
for k in invalid_keys:
del default_args[k]
parser.set_defaults(**default_args)
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
world_size = torch.cuda.device_count()
mp.spawn(main, args=(world_size, args), nprocs=world_size)