-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathparams.py
75 lines (51 loc) · 2.17 KB
/
params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import os
# Data Parameters
noise_param = int(os.environ.get("noise_param"))
bias_param = float(os.environ.get("bias_param"))
# SPSA Parameters
spsa_a = float(os.environ.get("spsa_a"))
spsa_c = float(os.environ.get("spsa_c"))
spsa_c_init = spsa_c
spsa_a_init = spsa_a
spsa_a_out_sim = float(os.environ.get("spsa_a_out_sim"))
spsa_c_out_sim = float(os.environ.get("spsa_c_out_sim"))
spsa_reps = int(os.environ.get("spsa_reps"))
n_iterations = int(os.environ.get("n_iterations"))
sim_in_iterations = int(os.environ.get("sim_in_iterations"))
sim_out_iterations = int(os.environ.get("sim_out_iterations"))
calibrate_supply = os.environ.get("calibrate_supply")
calibrate_demand = os.environ.get("calibrate_demand")
set_spa = os.environ.get("set_spa")
which_algo = os.environ.get("which_algo")
weight_counts = float(os.environ.get("weight_counts"))
weight_od = float(os.environ.get("weight_od"))
weight_speed = float(os.environ.get("weight_speed"))
bagging_run = int(os.environ.get("bagging_run"))
count_noise_param = int(os.environ.get("count_noise_param"))
# use correction heuristic
correction_heuristic = eval(os.environ.get("heuristic"))
spsa_autotune = eval(os.environ.get("auto_tune_spsa"))
momentum_beta = float(os.environ.get("momentum_beta"))
only_bias_correction = eval(os.environ.get("only_bias_correction"))
bias_correction_method = os.environ.get("bias_correction_method")
estimator = os.environ.get("estimator")
print("Using " + estimator + " for selecting the best fit")
if which_algo == "wspsa":
wspsa_thrshold = float(os.environ.get("wspsa_threshold"))
# for decaying the a and c for simulation out-of-loop
learning_decay_factor = 1.05
# exploration noise for bagging runs
exploration_noise = 10
# number of sequential calibration runs
n_sequential = 3
# number of bayesian initial exploration for spsa tuning
n_init_spsa_tune = 30
# number of bayesian iterations for spsa tuning
n_iterate_spsa_tune = 30
# number of bayesian initial exploration for supply
n_init_supply = 50
# number of bayesian iterations for supply
n_iterate_supply = 50
# name of the xml tags in the detector data
additonal_identifier = "inductionLoop_id" # "e1Detector_id"
output_identifier = "interval_id"