forked from Project-MONAI/MONAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_rand_torchiod.py
43 lines (33 loc) · 1.57 KB
/
test_rand_torchiod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import unittest
from unittest import skipUnless
import numpy as np
import torch
from parameterized import parameterized
from monai.transforms import RandTorchIOd
from monai.utils import optional_import, set_determinism
from tests.test_utils import assert_allclose
_, has_torchio = optional_import("torchio")
TEST_DIMS = [3, 128, 160, 160]
TEST_TENSOR = torch.rand(TEST_DIMS)
TEST_PARAMS = [[{"keys": ["img1", "img2"], "name": "RandomAffine"}, {"img1": TEST_TENSOR, "img2": TEST_TENSOR}]]
@skipUnless(has_torchio, "Requires torchio")
class TestRandTorchIOd(unittest.TestCase):
@parameterized.expand(TEST_PARAMS)
def test_random_transform(self, input_param, input_data):
set_determinism(seed=0)
result = RandTorchIOd(**input_param)(input_data)
self.assertFalse(np.allclose(input_data["img1"], result["img1"], atol=1e-6, rtol=1e-6))
assert_allclose(result["img1"], result["img2"], atol=1e-4, rtol=1e-4)
if __name__ == "__main__":
unittest.main()