forked from Project-MONAI/MONAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnonconfig_workflow.py
238 lines (210 loc) · 8.12 KB
/
nonconfig_workflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import torch
from monai.bundle import BundleWorkflow, PythonicWorkflow
from monai.data import DataLoader, Dataset
from monai.engines import SupervisedEvaluator
from monai.inferers import SlidingWindowInferer
from monai.networks.nets import UNet
from monai.transforms import (
Activationsd,
AsDiscreted,
Compose,
EnsureChannelFirstd,
LoadImaged,
SaveImaged,
ScaleIntensityd,
ScaleIntensityRanged,
)
from monai.utils import BundleProperty, CommonKeys, set_determinism
class NonConfigWorkflow(BundleWorkflow):
"""
Test class simulates the bundle workflow defined by Python script directly.
"""
def __init__(self, filename, output_dir, meta_file=None, logging_file=None):
super().__init__(workflow_type="inference", meta_file=meta_file, logging_file=logging_file)
self.filename = filename
self.output_dir = output_dir
self._bundle_root = "will override"
self._dataset_dir = "."
self._device = torch.device("cpu")
self._data = [{"image": self.filename}]
self._dataset = None
self._network_def = None
self._inferer = None
self._preprocessing = None
self._postprocessing = None
self._evaluator = None
self._version = None
self._monai_version = None
self._pytorch_version = None
self._numpy_version = None
def initialize(self):
set_determinism(0)
if self._version is None:
self._version = "0.1.0"
if self._monai_version is None:
self._monai_version = "1.1.0"
if self._pytorch_version is None:
self._pytorch_version = "1.13.1"
if self._numpy_version is None:
self._numpy_version = "1.22.2"
if self._preprocessing is None:
self._preprocessing = Compose(
[LoadImaged(keys="image"), EnsureChannelFirstd(keys="image"), ScaleIntensityd(keys="image")]
)
self._dataset = Dataset(data=self._data, transform=self._preprocessing)
dataloader = DataLoader(self._dataset, batch_size=1, num_workers=4)
if self._network_def is None:
self._network_def = UNet(
spatial_dims=3,
in_channels=1,
out_channels=2,
channels=[2, 2, 4, 8, 4],
strides=[2, 2, 2, 2],
num_res_units=2,
norm="batch",
)
if self._inferer is None:
self._inferer = SlidingWindowInferer(roi_size=(64, 64, 32), sw_batch_size=4, overlap=0.25)
if self._postprocessing is None:
self._postprocessing = Compose(
[
Activationsd(keys="pred", softmax=True),
AsDiscreted(keys="pred", argmax=True),
SaveImaged(keys="pred", output_dir=self.output_dir, output_postfix="seg"),
]
)
self._evaluator = SupervisedEvaluator(
device=self._device,
val_data_loader=dataloader,
network=self._network_def.to(self._device),
inferer=self._inferer,
postprocessing=self._postprocessing,
amp=False,
)
def run(self):
self._evaluator.run()
def finalize(self):
return True
def _get_property(self, name, property):
if name == "bundle_root":
return self._bundle_root
if name == "dataset_dir":
return self._dataset_dir
if name == "dataset_data":
return self._data
if name == "dataset":
return self._dataset
if name == "device":
return self._device
if name == "evaluator":
return self._evaluator
if name == "network_def":
return self._network_def
if name == "inferer":
return self._inferer
if name == "preprocessing":
return self._preprocessing
if name == "postprocessing":
return self._postprocessing
if name == "version":
return self._version
if name == "monai_version":
return self._monai_version
if name == "pytorch_version":
return self._pytorch_version
if name == "numpy_version":
return self._numpy_version
if property[BundleProperty.REQUIRED]:
raise ValueError(f"unsupported property '{name}' is required in the bundle properties.")
def _set_property(self, name, property, value):
if name == "bundle_root":
self._bundle_root = value
elif name == "device":
self._device = value
elif name == "dataset_dir":
self._dataset_dir = value
elif name == "dataset_data":
self._data = value
elif name == "dataset":
self._dataset = value
elif name == "evaluator":
self._evaluator = value
elif name == "network_def":
self._network_def = value
elif name == "inferer":
self._inferer = value
elif name == "preprocessing":
self._preprocessing = value
elif name == "postprocessing":
self._postprocessing = value
elif name == "version":
self._version = value
elif name == "monai_version":
self._monai_version = value
elif name == "pytorch_version":
self._pytorch_version = value
elif name == "numpy_version":
self._numpy_version = value
elif property[BundleProperty.REQUIRED]:
raise ValueError(f"unsupported property '{name}' is required in the bundle properties.")
class PythonicWorkflowImpl(PythonicWorkflow):
"""
Test class simulates the bundle workflow defined by Python script directly.
"""
def __init__(
self,
workflow_type: str = "inference",
config_file: str | None = None,
properties_path: str | None = None,
meta_file: str | None = None,
):
super().__init__(
workflow_type=workflow_type, properties_path=properties_path, config_file=config_file, meta_file=meta_file
)
self.dataflow: dict = {}
def initialize(self):
self._props_vals = {}
self._is_initialized = True
self.net = UNet(
spatial_dims=3,
in_channels=1,
out_channels=2,
channels=(16, 32, 64, 128),
strides=(2, 2, 2),
num_res_units=2,
).to(self.device)
preprocessing = Compose(
[
EnsureChannelFirstd(keys=["image"]),
ScaleIntensityd(keys="image"),
ScaleIntensityRanged(keys="image", a_min=-57, a_max=164, b_min=0.0, b_max=1.0, clip=True),
]
)
self.dataset = Dataset(data=[self.dataflow], transform=preprocessing)
self.postprocessing = Compose([Activationsd(keys="pred", softmax=True), AsDiscreted(keys="pred", argmax=True)])
def run(self):
data = self.dataset[0]
inputs = data[CommonKeys.IMAGE].unsqueeze(0).to(self.device)
self.net.eval()
with torch.no_grad():
data[CommonKeys.PRED] = self.inferer(inputs, self.net)
self.dataflow.update({CommonKeys.PRED: self.postprocessing(data)[CommonKeys.PRED]})
def finalize(self):
pass
def get_bundle_root(self):
return "."
def get_device(self):
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
def get_inferer(self):
return SlidingWindowInferer(roi_size=self.parser.roi_size, sw_batch_size=1, overlap=0)