forked from Project-MONAI/MONAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlazy_transforms_utils.py
91 lines (82 loc) · 3.87 KB
/
lazy_transforms_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from copy import deepcopy
from monai.data import MetaTensor, set_track_meta
from monai.transforms import InvertibleTransform, MapTransform, Randomizable
from monai.transforms.lazy.functional import apply_pending
from tests.test_utils import assert_allclose
apply_transforms_kwargs = ("pending", "mode", "padding_mode", "dtype", "align_corners")
def get_apply_param(init_param=None, call_param=None, params=apply_transforms_kwargs):
apply_param = {}
for key in apply_transforms_kwargs:
if init_param and key in init_param.keys():
apply_param[key] = init_param[key]
if call_param and key in call_param.keys():
apply_param[key] = call_param[key]
return apply_param
def test_resampler_lazy(
resampler,
expected_output,
init_param=None,
call_param=None,
output_key=None,
output_idx=None,
rtol=1e-5,
atol=1e-7,
skip_shape_check=False,
seed=None,
):
"""
This test function is used to test the consistency between non-lazy and lazy transforms.
Args:
resampler: instance of a resampling transform.
expected_output: output of non-lazy transform.
init_param: parameters that are used to initialize the transform.
call_param: parameters that are used when calling the transform.
output_key: key to get the output of the transform. This argument is used for dictionary based transforms.
output_idx: index to get the expected output from multiple outputs of the transform.
rtol: relative tolerance. This argument is only used to compare the output.
atol: absolute tolerance. This argument is only used to compare the output.
skip_shape_check: skip the check of shapes.
seed: set the random state with an integer seed. This argument is used for randomizable transforms.
"""
if isinstance(resampler, Randomizable):
resampler.set_random_state(seed=seed)
set_track_meta(True)
resampler.lazy = True
pending_output = resampler(**deepcopy(call_param))
if output_idx is not None:
expected_output, pending_output = (expected_output[output_idx], pending_output[output_idx])
if output_key is not None:
non_lazy_out, lazy_out = expected_output[output_key], pending_output[output_key]
else:
non_lazy_out, lazy_out = expected_output, pending_output
assert_allclose(lazy_out.peek_pending_affine(), non_lazy_out.affine)
if not skip_shape_check:
assert_allclose(lazy_out.peek_pending_shape(), non_lazy_out.shape[1:4])
apply_param = get_apply_param(init_param, call_param)
lazy_out = apply_pending(lazy_out, overrides=apply_param)[0]
assert_allclose(lazy_out, non_lazy_out, rtol=rtol, atol=atol)
if (
isinstance(resampler, InvertibleTransform)
and (not isinstance(resampler, MapTransform))
and isinstance(lazy_out, MetaTensor)
and isinstance(non_lazy_out, MetaTensor)
and non_lazy_out.applied_operations
):
resampler.lazy = False
out = resampler.inverse(lazy_out.clone())
ref = resampler.inverse(non_lazy_out.clone())
assert_allclose(out.applied_operations, [])
assert_allclose(out.pending_operations, [])
assert_allclose(ref, out, type_test=False, rtol=1e-3, atol=1e-3)
resampler.lazy = True