-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1_ppmiToText2.R
235 lines (182 loc) · 7.98 KB
/
1_ppmiToText2.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
require(tm) || stop("tm support is absent")
require(lsa) || stop("lsa support is absent")
require(ggplot2) || stop("ggplot2 support is absent")
require(factoextra) || stop("factoextra support is absent")
rm(list=ls())
setwd("C:/Users/vince/Desktop/Tesi/")
bcreatefiles <<- TRUE
bpreprocessing <<- TRUE
bremoveemptyfile <<- TRUE
blsa <<- FALSE
bcluster <<- FALSE
bplot <<- FALSE
run <- function()
{
cat("Start\n")
graphics.off()
oldw <- getOption("warn")
options(warn = -1)
tables <- "Tables";
patients <- "Patient_Status2.csv"
res <- try(Process(getwd(), tables, patients))
closeAllConnections()
if(inherits(res,"try-error"))
return(as.character(res))
options(warn = oldw)
cat("Stop\n")
return("true")
}
Process <- function(currentdir, tables, patients) {
pathLog <- file.path(currentdir,"log.txt");
unlink(pathLog)
logfile <- file(pathLog, "w")
cat("Start:",format(Sys.time(), "%d %b %Y %X "),"\n", sep="", file = logfile)
corpusName <- "Corpus"
corpusDir <- file.path(currentdir,corpusName)
if(bcreatefiles) {
#create corpus directory
cat("Create corpus directory: '",corpusName,"'\n", sep="", file = logfile)
unlink(corpusDir, recursive=TRUE)
dir.create(corpusDir, showWarnings = FALSE)
}
#load data
patientsFile <- file.path(currentdir,patients)
cat("Load data about patients in: '",patientsFile,"'\n", sep="", file = logfile)
patnos <- processPatients(patientsFile, logfile)
#patnos <- c("3000","3001", "3002") #remove
tablesFile <- file.path(currentdir,tables)
cat("Load data about tables in: '",tablesFile,"'\n", sep="", file = logfile)
tables <- processTables(tablesFile, logfile)
processPatientsTables(currentdir, corpusDir, patnos, tables, logfile)
}
processPatients <- function(patients, logfile) {
patno <- read.table(patients,
header = TRUE,
sep = ";",
stringsAsFactors = FALSE,
fileEncoding = "UTF-8-BOM" )
sortpatno <- sort(unique(patno$PATNO))
cat("Unique patient numbers: ",length(sortpatno),"\n", sep="", file = logfile)
return(sortpatno)
}
processTables <- function(dataset, logfile) {
csvFiles <- list.files(dataset, pattern = ".csv$", full.names = TRUE)
cat("Data tables: ",length(csvFiles),"\n", sep="", file = logfile)
return(csvFiles)
}
processPatientsTables <- function(currentdir, corpusdir, patno, tables, logfile) {
cat("Process patients/tables in: '",corpusdir,"'\n", sep="", file = logfile)
len <- length(patno)
if(bcreatefiles) {
cat("Create ",len," output text files in: '",corpusdir,"'\n", sep="", file = logfile)
for(i_p in patno) {
patnoFile <- file(file.path(corpusdir, paste(i_p,".txt",sep="")), "w")
close(patnoFile)
}
count <- 0
for(i_p in patno) {
count <- count + 1
cat(count,"/",len,"\n",sep="")
for(j_t in tables) {
#cat("Analyze patient ",i_p," in file '",j_t,"'\n", sep="", file = logfile)
datas <- read.csv(j_t, sep = ";",
header = TRUE,
stringsAsFactors = FALSE,
fileEncoding = "UTF-8-BOM" )
idatas <- which(datas$PATNO == i_p) ## cambiare le visite qui, c("SC","BL")
# idatas<-which(datas$EVENT)
subidatas <- datas[idatas,]
patnoFile <- file(file.path(corpusdir, paste(i_p,".txt",sep="")), "a")
cat(as.matrix(subidatas)," ",sep=" ", file = patnoFile)
close(patnoFile)
}
}
}
corpusdirST <- file.path(currentdir,"CorpusST")
if(bpreprocessing) {
unlink(corpusdirST, recursive = TRUE)
dir.create(corpusdirST, showWarnings = FALSE)
cat("Preprocessing ",len," output text files in: '",corpusdir,"'\n", sep="", file = logfile)
docs_corpus <- VCorpus(DirSource(corpusdir,encoding = "UTF-8"))
docs_corpus <- tm_map(docs_corpus, PlainTextDocument)
tokenize <- function(x) gsub("([_-])", " ", x)
docs_corpus <- tm_map(docs_corpus, tokenize)
docs_corpus <- tm_map(docs_corpus, tolower) #aggiungere i termini che ho trovato
docs_corpus <- tm_map(docs_corpus, removeWords, c("parkinsonian","parkinsonism","parkinson","pd","parkinsan","parkingsons","parkisons"
,"parkinons","parkinsonã½","gparkinson","parkisonism","parkinsinism","parkisnons","parksinsons",
"parkinsins","parksinons","carbidopalevoparkinsona","parkinosns","parkinsns","parkinspons",
"parkinssons","parkisnonism","parkisonsons","parknsons","steadyparkinsonirsadapine","parkinsonã½",
"gparkinson","carbidopalevoparkinsona","steadyparkinsonirsadapine","prkinson"))
#carbidopa e levdopa sono importate
docs_corpus <- tm_map(docs_corpus, removePunctuation)
docs_corpus <- tm_map(docs_corpus, removeNumbers)
docs_corpus <- tm_map(docs_corpus, stripWhitespace)
docs_corpus <- tm_map(docs_corpus, PlainTextDocument)
removeMinWordLength <- function(x) gsub("\\b[[:alpha:]]{1,3}\\b", "", x, perl=T)
docs_corpus <- tm_map(docs_corpus, removeMinWordLength)
docs_corpus <- tm_map(docs_corpus, removeWords, stopwords("english"))
docs_corpus <- tm_map(docs_corpus, removeWords, c("log"))
docs_corpus <- tm_map(docs_corpus, stripWhitespace)
docs2<-docs_corpus
docs2<- tm_map(docs2, PlainTextDocument)
#frequenze
dtmFreq <- TermDocumentMatrix(docs2)
m <- as.matrix(dtmFreq)
v <- sort(rowSums(m),decreasing=TRUE)
d <- data.frame(word = names(v),freq=v)
write.table(d,file = "frequenzeParole15.11.19.csv",row.names = T,col.names = T)
#stemming
docs_corpus <- tm_map(docs_corpus, stemDocument)
docs_corpus <- tm_map(docs_corpus, PlainTextDocument)
fl <- basename(DirSource(corpusdir)$filelist)
writeCorpus(docs_corpus, path = corpusdirST, filenames = fl)
}
if(bremoveemptyfile) {
cat("Remove empty files from corpus\n",sep="", file = logfile)
efiles <- list.files(corpusdirST, pattern = ".txt$", full.names = TRUE)
for(e_f in efiles) {
if(file.info(e_f)$size <= 1) {
cat("Remove file: '",e_f,"'\n",sep="", file = logfile)
unlink(e_f)
}
}
}
if(blsa) {
docs_corpus <- VCorpus(DirSource(corpusdirST))
cat("Compute Term-Document matrix\n",sep="", file = logfile)
dtm <- TermDocumentMatrix(docs_corpus)
cat("Compute Tf-Idf\n",sep="", file = logfile)
wdtm <- weightTfIdf(dtm, normalize = TRUE)
wtdm.matrix <- as.matrix(wdtm)
cat("Compute LSA\n",sep="", file = logfile)
lsaSpace <- lsa(wtdm.matrix, dims=dimcalc_share())
cat("Compute cosine\n",sep="", file = logfile)
dLSA <- 1 - cosine(as.textmatrix(lsaSpace))
cat("Normalize distance space\n",sep="", file = logfile)
dLSA[which(dLSA < 0)] <- 0
#dLSA <- dLSA/max(dLSA)
saveRDS(dLSA, file.path(currentdir,"dLSA.rds"))
}
if(bcluster) {
cat("Perform k-means clustering\n",sep="", file = logfile)
dLSAr <- readRDS(file.path(currentdir,"dLSA.rds"))
rows <- nrow(dLSAr)
k <- min(round(rows/2), 7) #7 is the number of patient classes
kmeans_res <- kmeans(as.matrix(dLSAr), k)
while(length(which(kmeans_res$size <=1)) > 0) {
toremove <- length(which(kmeans_res$size <=1))
cat("\nk-means K:",k," (clusters with unique element:",toremove ,")\n")
print(kmeans_res$size)
k <- k - max(round(toremove/2), 1)
kmeans_res <- kmeans(as.matrix(dLSAr), k)
}
saveRDS(kmeans_res, file.path(currentdir,"kmeans.rds"))
}
if(bplot) {
clusters <- readRDS(file.path(currentdir,"kmeans.rds"))
datas <- as.matrix(readRDS(file.path(currentdir,"dLSA.rds")))
fviz_cluster(clusters, data = datas, geom= c("point"))
}
}
###############
run()