-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path122B Homework 3 - Laurent Series.tex
94 lines (75 loc) · 3.41 KB
/
122B Homework 3 - Laurent Series.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
\documentclass[11pt]{article}
\usepackage[margin=1.25in]{geometry}
\usepackage{graphicx,tikz}
\usepackage{amsmath,amsthm}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{boondox-cal}
\title{ }
\newtheorem*{thm}{Theorem}
\begin{document}
%\maketitle
%\date
\begin{center} % centers
\Large{Homework 3} % Large makes the font larger, put title inside { }
\end{center}
\begin{center}
Vincent La \\
Math 122B \\
August 14, 2017
\end{center}
\begin{enumerate}
\item[1.] Find the Laurent Series representation of
\[f(z) = z^2 \sin{\frac{1}{z^2}}\]
for the domain $0 < |z| < \infty$.
\paragraph{Solution} First, consider the MacLaurin series for $\sin{z}$. Because it is analytic everywhere, its radius of convergence is all of $\mathbb{C}$
\[\sin{z} = \sum^{\infty}_{n=0} \frac{(-i)^n z^{2n+1}}{(2n+1)!} \]
This implies,
\[\begin{aligned}
\sin{\frac{1}{z^2}}
&= \sum^{\infty}_{n=0} \frac{(-i)^n (\frac{1}{z^2})^{2n+1}}{(2n+1)!} \\
z^2\sin{\frac{1}{z^2}}
&= z^2 \sum^{\infty}_{n=0} \frac{(-i)^n (\frac{1}{z^2})^{2n+1}}{(2n+1)!} \\
&= \sum^{\infty}_{n=0} \frac{(-i)^n \cdot z^2 \cdot (\frac{1}{z^2})^{2n+1}}{(2n+1)!} \\
&= \sum^{\infty}_{n=0} \frac{(-i)^n (1)^{2n+1}}{(2n+1)!}
= \sum^{\infty}_{n=0} \frac{(-i)^n}{(2n + 1)!}
\end{aligned}\]
\item[2.] Find the Laurent series representation of the function
\[f(z) = \frac{2}{(z+1)(z+3)} \]
\paragraph{In the annulus $1 < |z| < 3$}
First, using partial fractions decomposition,
\[\begin{aligned}
f(z) &= \frac{1}{z+1} - \frac{1}{z+3} \\
&= \frac{1}{z}\frac{1}{1 + \frac{1}{z}} - \frac{1}{z}\frac{1}{1 + \frac{3}{z}}
\end{aligned}\]
Furthermore, the Taylor Series
\[f(z) = \frac{1}{1 + z} = \sum^{\infty}_{n = 0} (-1)^n z^n\]
for $|z| < 1$. This does not converge for our current domain, however, because $|z| > 1 \implies |\frac{1}{z}| < 1$ we can use the change of variables $z = \frac{1}{z}$.
Thus,
\[\frac{1}{z} \cdot \frac{1}{1 + \frac{1}{z}} = \frac{1}{z}\cdot \sum^{\infty}_{n = 0} (-1)^n z^{-n}\]
Moreover, we can substitute $z = \frac{3}{z}$ into the same Taylor Series above. From earlier, we had that $|\frac{1}{z}| < 1$, and because $|z| < 3$ implies $|\frac{1}{z}| > \frac{1}{3}$, we get that our representation works for $\frac{1}{3} < |\frac{1}{z}| < 1$, which is valid. In conclusion,
\[\begin{aligned}f(z)
&= \frac{2}{(z+1)(z+3)} \\
&=
\frac{1}{z}\cdot \sum^{\infty}_{n = 0} (-1)^n z^{-n} +
\frac{1}{z}\cdot \sum^{\infty}_{n = 0} (-1)^n 3\cdot z^{-n} \\
&= \frac{1}{z} \sum^{\infty}_{n = 0} (-1)^n 4\cdot z^{-n}
\end{aligned}\]
\paragraph{In the annulus $1 < |z - 3| < 3$}
...
\item[3.] Find the Laurent Series representation of the function
\[f(z) = \frac{1 + 2z}{z^2 + z^3} \]
in the annulus $0 < |z| < 1$.
\paragraph{Solution}
\[\begin{aligned}
f(z) &= \frac{1 + z^2}{z^2 + z^3} \\
&= \frac{1}{z^2 + z^3} + \frac{2z}{z^2 + z^3} \\
&= \frac{1}{z^2}\frac{1}{1+z} + \frac{2z}{z}\frac{1}{1 + z} \\
\end{aligned}\]
We know that $\frac{1}{1 - z}$ has the MacLaurin series representation $\sum^{\infty}_{n=0} z^n$ for $|z| < 1$. Furthermore, $\frac{1}{1 + z}= \sum^{\infty}_{n=0} (-1)^nz^n$ if we use the change of variables $-z = z$, which leads to the radius of convergence $|-z| = |z| < 1$. Thus, we have
\[\begin{aligned}
f(z) &= \frac{1}{z^2} \cdot \sum^{\infty}_{n=0} (-1)^nz^n + 2 \cdot \sum^{\infty}_{n=0} (-1)^nz^n \\
&= \frac{2}{z^2} \cdot \sum^{\infty}_{n=0} (-1)^nz^n
\end{aligned}\]
\end{enumerate}
\end{document}