-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path122A Homework 5 - Power Series.tex
108 lines (80 loc) · 3.8 KB
/
122A Homework 5 - Power Series.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
\documentclass[11pt]{article}
\usepackage[margin=1.25in]{geometry}
\usepackage{graphicx,tikz}
\usepackage{amsmath,amsthm}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{boondox-cal}
\title{ }
\newtheorem*{thm}{Theorem}
\begin{document}
%\maketitle
%\date
\begin{center} % centers
\Large{Homework 5} % Large makes the font larger, put title inside { }
\end{center}
\begin{center}
Vincent La \\
Math 122A \\
July 23, 2017
\end{center}
\section{Monday and Tuesday}
\begin{enumerate}
\item[4.3] Evaluate $\int_C f$ where $f(z) = x^2 + iy^2$ as in Example 1, but where $C$ is given by $z(t) = t^2 + it^2$, $0 \leq t \leq 1$.
\paragraph{Solution} This implies $\dot{z}(t) = \cos(t) - i\sin(t)$, so
\[\int^b_a f(z(t))\dot{z}(t) dt = \int^{2\pi}_0 (\frac{\sin(t)}{\sin^2(t) + \cos^2(t)} - i\frac{\cos(t)}{\sin^2(t)+\cos^2(t)})(\cos(t) - i\sin(t) dt\]
This in turn simplifies to
\[\begin{aligned}
\int^{2\pi}_{0} (\sin(t) - i\cos(t))(\cos(t) - i\sin(t)) dt &=
\int^{2\pi}_{0} \sin^2(t) + \cos^2(t) dt \\
&= -\int^{2\pi}_{0} 1 dt \\
&= -2\pi \\
\end{aligned}\]
This is unlike Example 2, where the answer was $2\pi i$. Now, line integrals should be independent of parameterization, but this parameterization is actually the same as the one in Example 2 but moving in the opposite direction.
\item[4.5] Use the Fundamental Theorem of Calculus (Proposition 4.12) to prove that if $F$ is analytic on a region and $F'(z) = 0$ then $F$ is constant.
\begin{proof}
Let $F$ be any analytic function where $F'(z) = 0$. Let the bounds of integration $a, b \in \mathbb{Z}$ be arbitrary. First, the Fundamental Theorem of Calculus states that
\[0 = F'(z) = \int_C f(z) dz = F(z(b))] - F(z(a)) \]
Thus,
\[0 = \int 0 dz = F(z(b)) - F(z(a)) \]
This is only true if $a = b$ or $F$ is constant. However, since $a, b$ arbitrary, it must be that $F$ is constant.
\end{proof}
\end{enumerate}
\section{Wednesday and Thursday}
\begin{enumerate}
\item Prove that $\lim_{n \rightarrow \infty} \xi^n = 0$ whenever $|\xi| < 1$. Conversely, prove that if $|\xi| \geq 1$ then $\{\xi^n\}$ is a divergent sequence.
\begin{enumerate}
\item $\lim_{n \rightarrow \infty} \xi^n = 0$ whenever $|\xi| < 1$
\begin{proof}
Let $\epsilon > 0$ be arbitrary and let $\delta = \frac{1}{\epsilon}.$ Then, show that whenever $|n| > \delta$ that $|f(n) - 0| < \epsilon$. Notice,
$n > \delta = \frac{1}{\epsilon}$ implies that
\[|\xi^n| < |\xi^\frac{1}{\epsilon}| < 1\]
because $|\xi| < 1$.
\bigskip
This further implies that $|\xi^\frac{1}{\epsilon}|^\epsilon < \epsilon$, or
$|\xi^n| < |\xi^1| < \epsilon$ as we set out to prove.
\end{proof}
\item
\end{enumerate}
\end{enumerate}
\subsection{Extra Problems}
\begin{enumerate}
\item[5.1] Find the powers series expansion of $f(z) = z^2$ around $z = 2$.
In general, a Taylor Series about a function is
\[\sum^{\infty}_{n=0} \frac{f^{(n)}(a)}{n!}(z-a)^n \]
Filling the terms in, here it is $4 + 4(z-2) + (z-2)^2$.
\item[5.2] Find power series expansion for $e^z$ about any point $a$
\item[5.3] Show that an odd entire function only has odd terms in its power series expansion about $z = 0$.
\begin{proof}
(Insert proof that $f$ even implies $f'$ odd and that $f$ odd implies $f'$ even here).
If an odd function is entire, it has a power series expansion which we can write
\[
\frac{f^{(0)}(0)}{0!}z^0 +
\frac{f^{(1)}(0)}{1!}z^1 +
\frac{f^{(2)}(0)}{2!}z^2 +
\frac{f^{(3)}(0)}{3!}z^3 + ... \]
Now, suppose that if the $n^{th}$ term is odd, then the $n + 1^{th}$ term will also be odd and induct on $n \in \mathbb{Z}^+$.
First, let us show the base case $n = 0$. Now, because $f$ is odd, then $\frac{f^{(0)}(0)}{0!}z^0 = f(0)$ is odd.
\end{proof}
\end{enumerate}
\end{document}