forked from NVIDIA/NeMo-Curator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_filters.py
1078 lines (927 loc) · 37.8 KB
/
test_filters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import dask
import numpy as np
import pandas as pd
import pytest
from dask import dataframe as dd
from nemo_curator.datasets import DocumentDataset
from nemo_curator.datasets.parallel_dataset import ParallelDataset
from nemo_curator.filters import (
AlphaFilter,
BoilerPlateStringFilter,
BulletsFilter,
CommonEnglishWordsFilter,
DocumentFilter,
EllipsisFilter,
GeneralCommentToCodeFilter,
HistogramFilter,
HTMLBoilerplateFilter,
LengthRatioFilter,
LongWordFilter,
MeanWordLengthFilter,
NonAlphaNumericFilter,
NumberOfLinesOfCodeFilter,
NumbersFilter,
ParenthesesFilter,
PerExtensionFilter,
PornographicUrlsFilter,
PunctuationFilter,
PythonCommentToCodeFilter,
RepeatedLinesByCharFilter,
RepeatedLinesFilter,
RepeatedParagraphsByCharFilter,
RepeatedParagraphsFilter,
RepeatingDuplicateNGramsFilter,
RepeatingTopNGramsFilter,
SymbolsToWordsFilter,
TokenizerFertilityFilter,
UrlsFilter,
WhiteSpaceFilter,
WordCountFilter,
WordsWithoutAlphabetsFilter,
XMLHeaderFilter,
)
from nemo_curator.filters.models.qe_models import COMET_IMPORT_MSG, PYMARIAN_IMPORT_MSG
from nemo_curator.modules import (
Filter,
ParallelScoreFilter,
Score,
ScoreFilter,
Sequential,
)
from nemo_curator.utils.decorators import batched
from nemo_curator.utils.import_utils import is_unavailable, safe_import
comet = safe_import("comet", msg=COMET_IMPORT_MSG)
pymarian = safe_import("pymarian", msg=PYMARIAN_IMPORT_MSG)
class LetterCountFilter(DocumentFilter):
"""
Keeps documents that have at least some number of a given letter
"""
def __init__(self, letter="a", min_count=5):
super().__init__()
self.letter = letter
self.min_count = min_count
def score_document(self, text):
return text.count(self.letter)
def keep_document(self, score):
return score >= self.min_count
class BatchedLengthFilter(DocumentFilter):
"""
Keeps documents of a given length
"""
def __init__(self, min_length=5, max_length=10):
super().__init__()
self.min_length = min_length
self.max_length = max_length
@batched
def score_document(self, df):
return df.str.len()
@batched
def keep_document(self, scores):
min_threshold = self.min_length <= scores
max_threshold = scores <= self.max_length
return min_threshold & max_threshold
def all_equal(left_dataset, right_dataset):
return all(left_dataset.df.compute() == right_dataset.df.compute())
def list_to_dataset(documents, col_name="text", npartitions=2):
data = {col_name: documents}
pdf = pd.DataFrame(data)
return DocumentDataset(dd.from_pandas(pdf, npartitions=npartitions))
def two_lists_to_parallel_dataset(
src_documents,
tgt_documents,
src_lang,
tgt_lang,
src_col_name="src",
tgt_col_name="tgt",
npartitions=2,
):
src_langs = [src_lang] * len(src_documents)
tgt_langs = [tgt_lang] * len(src_documents)
data = {
src_col_name: src_documents,
"src_lang": src_langs,
tgt_col_name: tgt_documents,
"tgt_lang": tgt_langs,
}
pdf = pd.DataFrame(data)
return ParallelDataset(dd.from_pandas(pdf, npartitions=npartitions))
@pytest.fixture
def letter_count_data():
return list_to_dataset(
["Two aa", "a a Three a", "Five aaa aa", "aaaSeven aaaa"], col_name="documents"
)
@pytest.fixture
def parallel_letter_count_data():
return two_lists_to_parallel_dataset(
["Einsa", "Zwei aaa", "a Drei a", "Fünf aaa a", "aaaSieben aaaa"],
["aOne", "Two aa", "a a Three a", "Five aaa aa", "aaaSeven aaaa"],
src_lang="de",
tgt_lang="en",
src_col_name="src",
tgt_col_name="tgt",
)
@pytest.fixture
def length_ratio_data():
return two_lists_to_parallel_dataset(
["Test", "test", "Test Test ", "Test Test"],
["Prueba", "prueba prueba prueba", "Prueba Prueba", "Prueba Prueba Prueba "],
src_lang="en",
tgt_lang="es",
)
class TestFilterModule:
def test_score_filter(self, letter_count_data):
letter_filter = LetterCountFilter()
filter_step = ScoreFilter(letter_filter, text_field="documents")
filtered_data = filter_step(letter_count_data)
expected_indices = [2, 3]
expected_data = DocumentDataset(letter_count_data.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_score(self, letter_count_data):
letter_filter = LetterCountFilter()
score_field = "a_count"
score_step = Score(
letter_filter.score_document,
text_field="documents",
score_field=score_field,
)
scored_data = score_step(letter_count_data)
expected_scores = pd.Series([2, 3, 5, 7])
scores = scored_data.df[score_field]
assert all(
expected_scores == scores.compute()
), f"Expected {expected_scores} but got {scores}"
def test_retain_score_filter(self, letter_count_data):
letter_filter = LetterCountFilter()
score_field = "count_a"
filter_step = ScoreFilter(
letter_filter, text_field="documents", score_field=score_field
)
filtered_data = filter_step(letter_count_data)
expected_indices = [2, 3]
# Compute before loc due to https://github.com/dask/dask-expr/issues/1036
expected_data = letter_count_data.df.compute().loc[expected_indices]
expected_data = DocumentDataset(dd.from_pandas(expected_data, 2))
expected_data.df[score_field] = pd.Series([5, 7], index=expected_data.df.index)
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_filter(self, letter_count_data):
letter_filter = LetterCountFilter()
score_field = "a_count"
score_step = Score(
letter_filter.score_document,
text_field="documents",
score_field=score_field,
)
scored_data = score_step(letter_count_data)
filter_step = Filter(letter_filter.keep_document, score_field)
filtered_data = filter_step(scored_data)
expected_indices = [2, 3]
# Compute before loc due to https://github.com/dask/dask-expr/issues/1036
expected_data = letter_count_data.df.compute().loc[expected_indices]
expected_data = dd.from_pandas(expected_data, 2)
expected_data[score_field] = pd.Series([5, 7], index=expected_data.index)
expected_data = DocumentDataset(expected_data)
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_invert(self, letter_count_data):
letter_filter = LetterCountFilter()
filter_step = ScoreFilter(letter_filter, text_field="documents", invert=True)
filtered_data = filter_step(letter_count_data)
expected_indices = [0, 1]
expected_data = DocumentDataset(letter_count_data.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_sequential_filter(self, letter_count_data):
filters = Sequential(
[
ScoreFilter(LetterCountFilter(), text_field="documents"),
ScoreFilter(LetterCountFilter(min_count=6), text_field="documents"),
]
)
filtered_data = filters(letter_count_data)
expected_indices = [3]
expected_data = DocumentDataset(letter_count_data.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_batch_score_filter(self, letter_count_data):
length_filter = BatchedLengthFilter(min_length=8, max_length=11)
filter_step = ScoreFilter(length_filter, text_field="documents")
filtered_data = filter_step(letter_count_data)
expected_indices = [1, 2]
expected_data = DocumentDataset(letter_count_data.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_batch_score(self, letter_count_data):
length_filter = BatchedLengthFilter(min_length=8, max_length=11)
score_field = "lengths"
score_step = Score(
length_filter.score_document,
text_field="documents",
score_field=score_field,
)
scored_data = score_step(letter_count_data)
expected_scores = pd.Series([6, 11, 11, 13])
scores = scored_data.df[score_field]
assert all(
expected_scores == scores.compute()
), f"Expected {expected_scores} but got {scores}"
def test_batch_filter(self, letter_count_data):
length_filter = BatchedLengthFilter(min_length=8, max_length=11)
score_field = "lengths"
score_step = Score(
length_filter.score_document,
text_field="documents",
score_field=score_field,
)
scored_data = score_step(letter_count_data)
filter_step = Filter(length_filter.keep_document, score_field)
filtered_data = filter_step(scored_data)
expected_indices = [1, 2]
expected_data = letter_count_data.df.loc[expected_indices]
expected_data[score_field] = pd.Series([11, 11], index=expected_data.index)
expected_data = DocumentDataset(expected_data)
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_score_filter_type(self, letter_count_data):
letter_filter = LetterCountFilter()
filter_step = ScoreFilter(letter_filter, text_field="documents", score_type=int)
filtered_data = filter_step(letter_count_data)
expected_indices = [2, 3]
expected_data = DocumentDataset(letter_count_data.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_score_type(self, letter_count_data):
letter_filter = LetterCountFilter()
score_field = "a_count"
score_step = Score(
letter_filter.score_document,
text_field="documents",
score_field=score_field,
score_type=int,
)
scored_data = score_step(letter_count_data)
expected_scores = pd.Series([2, 3, 5, 7])
scores = scored_data.df[score_field]
assert all(
expected_scores == scores.compute()
), f"Expected {expected_scores} but got {scores}"
def test_chain_filter(self, letter_count_data):
letter_count_filter = LetterCountFilter(min_count=4)
length_filter = BatchedLengthFilter(min_length=8, max_length=11)
filters = Sequential(
[
ScoreFilter(letter_count_filter, text_field="documents"),
ScoreFilter(length_filter, text_field="documents"),
]
)
filtered_data = filters(letter_count_data)
expected_indices = [2]
expected_data = DocumentDataset(letter_count_data.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_parallel_score_filter(self, parallel_letter_count_data):
src_letter_count_filter = LetterCountFilter(min_count=2)
tgt_letter_count_filter = LetterCountFilter(min_count=3)
filter_step = ParallelScoreFilter(
src_letter_count_filter, tgt_letter_count_filter
)
filtered_data = filter_step(parallel_letter_count_data)
expected_indices = [2, 3, 4]
expected_data = ParallelDataset(
parallel_letter_count_data.df.loc[expected_indices]
)
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_joint_score_filter(self, length_ratio_data):
filter_ = LengthRatioFilter(
max_ratio=1.5,
src_lang="en",
tgt_lang="de",
score_field="ratio",
score_type=float,
)
filtered_data = filter_(length_ratio_data)
expected_indices = [0, 2]
expected_data = ParallelDataset(length_ratio_data.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
class TestHeuristicFilters:
def test_nonalpha(self):
dataset = list_to_dataset(
["", "This is a test case.", "%$^%$^%$&^$()))))", "$aaa"]
)
filters = ScoreFilter(NonAlphaNumericFilter())
filtered_data = filters(dataset)
expected_indices = [1, 3]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_symbolswords(self):
dataset = list_to_dataset(
[
"mixed bag ... #",
"full of words",
"... # ... # #",
"barely ok 3 4 5 6 7 8 9 #",
]
)
filters = ScoreFilter(SymbolsToWordsFilter())
filtered_data = filters(dataset)
expected_indices = [1, 3]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_numbers(self):
dataset = list_to_dataset(
["purely letters", "34134543", "$!@$@!$!@", "abcdefghi1"]
)
filters = ScoreFilter(NumbersFilter(max_number_to_text_ratio=0.1))
filtered_data = filters(dataset)
expected_indices = [0, 2, 3]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_urls(self):
dataset = list_to_dataset(
[
"https://www.nvidia.com/en-us/",
"no urls here!",
"$!@$@!$!@",
"bunch of other words with url afdsjafidsaofjbwreowihfdsafbdashuoiotauhiofdafdsafd fdasfdafdsafdsafdsafdsafdsafdsa https://www.nvidia.com/en-us/ something else after the url etc more and more",
"words with url https://www.nvidia.com/en-us/",
]
)
filters = ScoreFilter(UrlsFilter())
filtered_data = filters(dataset)
expected_indices = [1, 2, 3]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_bullets(self):
dataset = list_to_dataset(
[
"• not good",
"good",
"50 \n ⦾ 50",
"⁌ this \n⁌ should \n⁌barely \n⁌pass \n⁌5 \n⁌6 \n⁌7 \n⁌8 \n⁌9 \n done!",
]
)
filters = ScoreFilter(BulletsFilter())
filtered_data = filters(dataset)
expected_indices = [1, 2, 3]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_whitespace(self):
dataset = list_to_dataset(["\t\n\r", "good", "50%\n\n\n", "123\b"])
filters = ScoreFilter(WhiteSpaceFilter())
filtered_data = filters(dataset)
expected_indices = [1, 3]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_parentheses(self):
dataset = list_to_dataset(
["()", "(not good)", "this is completely absolutely fine", "123456789("]
)
filters = ScoreFilter(ParenthesesFilter())
filtered_data = filters(dataset)
expected_indices = [2, 3]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_longword(self):
dataset = list_to_dataset(["tiny", "large"])
filters = ScoreFilter(LongWordFilter(max_word_length=4))
filtered_data = filters(dataset)
expected_indices = [0]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_wordcount(self):
dataset = list_to_dataset(
["", "one", "two words", "$#@$ %$@$#@ !#@!", "one two three four five"]
)
filters = ScoreFilter(WordCountFilter(min_words=2, max_words=4))
filtered_data = filters(dataset)
expected_indices = [2, 3]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_wordcount_zh(self):
dataset = list_to_dataset(["", "你好。", "我喜欢学习中文。"])
filters = ScoreFilter(WordCountFilter(min_words=2, max_words=5, lang="zh"))
filtered_data = filters(dataset)
expected_indices = [1, 2]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_wordcount_ja(self):
dataset = list_to_dataset(
["", "猫が寝ます。", "私は日本語のテキストを分割します。"]
)
filters = ScoreFilter(WordCountFilter(min_words=5, max_words=11, lang="ja"))
filtered_data = filters(dataset)
expected_indices = [1, 2]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_boilerplate(self):
dataset = list_to_dataset(
[
"nothing\t here",
"1\n\n2\n\n3\n\n4\n\n5\n\n6\n\nterms of use\n\n privacy policy\n\n cookie policy\n\nuses cookies",
"too much \n\n privacy & cookies policy",
]
)
filters = ScoreFilter(BoilerPlateStringFilter())
filtered_data = filters(dataset)
expected_indices = [0, 1]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_meanwordlength(self):
dataset = list_to_dataset(
[
"a",
"aa",
"superlongword short",
"evenly balanced",
"waytoolongforasingleword",
]
)
filters = ScoreFilter(MeanWordLengthFilter())
filtered_data = filters(dataset)
expected_indices = [2, 3]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_repeatedlines(self):
dataset = list_to_dataset(["totally unique", "half.\nhalf."])
filters = ScoreFilter(RepeatedLinesFilter())
filtered_data = filters(dataset)
expected_indices = [0]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_repeatedparagraphs(self):
dataset = list_to_dataset(["totally unique", "half.\n\nhalf."])
filters = ScoreFilter(RepeatedParagraphsFilter())
filtered_data = filters(dataset)
expected_indices = [0]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_repeatedlineschar(self):
dataset = list_to_dataset(
[
"totally unique",
"a.\na.\nvery very very short duplicate.",
"half.\nhalf.",
"super very incredibly huge long duplicate.\nsuper very incredibly huge long duplicate.\na.\nb.\nc.",
]
)
filters = ScoreFilter(RepeatedLinesByCharFilter())
filtered_data = filters(dataset)
expected_indices = [0, 1]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_repeatedparagraphschar(self):
dataset = list_to_dataset(
[
"totally unique",
"a.\n\n a.\n\n very very very short duplicate.",
"half.\n\nhalf.",
"super very incredibly huge long duplicate.\n\nsuper very incredibly huge long duplicate.\n\n a.\n\n b.\n\n c.",
]
)
filters = ScoreFilter(RepeatedParagraphsByCharFilter())
filtered_data = filters(dataset)
expected_indices = [0, 1]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_repeatingtopngrams(self):
dataset = list_to_dataset(
[
"this is a totally fine sentence with no repeat ngrams so we are ok",
"a b . a b",
"a a a a a a",
"totally fine small dupe a b a b",
]
)
filters = ScoreFilter(RepeatingTopNGramsFilter())
filtered_data = filters(dataset)
expected_indices = [0, 3]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_repeatingduplicatengrams(self):
dataset = list_to_dataset(
["a a b b a a b b", "totally fine", "a a a a this should be fine as well"]
)
filters = ScoreFilter(RepeatingDuplicateNGramsFilter())
filtered_data = filters(dataset)
expected_indices = [1, 2]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_punctuation(self):
dataset = list_to_dataset(
["not good", "good.", "just\n barely\n fine\n ok\n yep."]
)
filters = ScoreFilter(
PunctuationFilter(max_num_sentences_without_endmark_ratio=0.8)
)
filtered_data = filters(dataset)
expected_indices = [1, 2]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_ellipsis(self):
dataset = list_to_dataset(
["not good...", "good.", "just...\n barely...\n fine...\n ok...\n yep."]
)
filters = ScoreFilter(
EllipsisFilter(max_num_lines_ending_with_ellipsis_ratio=0.8)
)
filtered_data = filters(dataset)
expected_indices = [1, 2]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_commonenglishwords(self):
dataset = list_to_dataset(["uncommon", "the and", "the and and of to"])
filters = ScoreFilter(CommonEnglishWordsFilter())
filtered_data = filters(dataset)
expected_indices = [1, 2]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_wordswithoutalphabets(self):
dataset = list_to_dataset(["totally fine", "good good good good !", "@"])
filters = ScoreFilter(WordsWithoutAlphabetsFilter())
filtered_data = filters(dataset)
expected_indices = [0, 1]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_pornographicurls(self):
dataset = list_to_dataset(
[
"no url",
"fine url https://www.nvidia.com/en-us/",
"bad url https://www.pornhub.com/",
]
)
filters = ScoreFilter(PornographicUrlsFilter())
filtered_data = filters(dataset)
expected_indices = [0, 1]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_histogram(self):
dataset = list_to_dataset(
[
"This is a perfectly fine English document.",
"But if you insist that this is written in Chinese,",
"it's likely that something is fishy.",
"另一方面,这是一个好的中文文档,",
"但你一定要说这是英文文档,",
"那很可能有些地方出了差错。",
]
)
filter1 = ScoreFilter(HistogramFilter(lang="en"))
filter2 = ScoreFilter(HistogramFilter(lang="zh"))
expected_indices1 = [0, 1, 2]
expected_indices2 = [3, 4, 5]
expected_data1 = DocumentDataset(dataset.df.loc[expected_indices1])
expected_data2 = DocumentDataset(dataset.df.loc[expected_indices2])
filtered_data1 = filter1(dataset)
filtered_data2 = filter2(dataset)
assert all_equal(
expected_data1, filtered_data1
), f"Expected {expected_data1} but got {filtered_data1}"
assert all_equal(
expected_data2, filtered_data2
), f"Expected {expected_data2} but got {filtered_data2}"
class TestCodeFilters:
def test_python_comment_to_code(self):
doc_1 = "# Good code\nprint('hello world')"
doc_2 = "print('bad code')"
doc_3 = "# Too many\n# comments!"
doc_4 = "'''Good comment'''\nprint('hello world')"
dataset = list_to_dataset([doc_1, doc_2, doc_3, doc_4])
filters = ScoreFilter(PythonCommentToCodeFilter())
filtered_data = filters(dataset)
expected_indices = [0, 3]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_general_commment_to_code(self):
doc_1 = '// Good code\nprintf("hello world\\n")'
doc_2 = 'printf("bad code\\n")'
doc_3 = "// Way far too many\n// comments!"
doc_4 = '/*\nGood comment\n*/\nprintf("hello world\\n")'
dataset = list_to_dataset([doc_1, doc_2, doc_3, doc_4])
filters = ScoreFilter(GeneralCommentToCodeFilter("text/x-c++"))
filtered_data = filters(dataset)
expected_indices = [0, 3]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_number_lines_code(self):
doc_1 = """print("too short")"""
doc_2 = """print("just")
print("right")"""
doc_3 = """print("way")
print("too")
print("long")
print("!")"""
dataset = list_to_dataset([doc_1, doc_2, doc_3])
filters = ScoreFilter(NumberOfLinesOfCodeFilter(min_lines=2, max_lines=3))
filtered_data = filters(dataset)
expected_indices = [1]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_xml_header(self):
dataset = list_to_dataset(
["no header", "<?xml version=1.0>", "slightly offset <?xml version="]
)
filters = ScoreFilter(XMLHeaderFilter())
filtered_data = filters(dataset)
expected_indices = [0]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_alpha(self):
dataset = list_to_dataset(["full of alphabet", "<>?$#@!", "mixed <>"])
filters = ScoreFilter(AlphaFilter())
filtered_data = filters(dataset)
expected_indices = [0, 2]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_html_boilerplate(self):
good_doc = """
<!DOCTYPE html>
<html>
<head>
<title>Sample Webpage</title>
</head>
<body>
<h1>Welcome to my sample webpage</h1>
<p>This is a very fun paragraph on my sample webpage.</p>
</body>
</html>
"""
boilerplate_heavy_doc = """
<!DOCTYPE html>
<html>
<head>
<title>Boilerplate Webpage</title>
</head>
<body>
<h1><span>Welcome</span> <span>to</span> <span>my</span> <span>boilerplate</span> <span>webpage</span></h1>
<div>
<div>
<div><p>hi</p></div>
</div>
<div>
<div><p>hi</p></div>
</div>
</div>
</body>
</html>
"""
small_doc = """
<!DOCTYPE html>
<html><body>hello world</body></html>
"""
dataset = list_to_dataset([good_doc, boilerplate_heavy_doc, small_doc])
filters = ScoreFilter(HTMLBoilerplateFilter())
filtered_data = filters(dataset)
expected_indices = [0]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
@pytest.fixture
def per_extension_filter(self):
metadata_file = os.path.abspath(
os.path.join(
os.path.dirname(__file__),
"..",
"nemo_curator",
"utils",
"code_meta.csv",
)
)
return PerExtensionFilter("c++", "cpp", metadata_file=metadata_file)
def test_per_extension_filter(self, per_extension_filter):
good_cpp = """
#include <iostream>
using namespace std;
int main() {
cout << "Hello World!" << endl;
return 0;
};
"""
dataset = list_to_dataset([good_cpp])
filters = ScoreFilter(per_extension_filter)
filtered_data = filters(dataset)
expected_indices = [0]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
@pytest.mark.parametrize(
"content,expected",
[
("", (0, 0.0)),
("\n", (0, 0.0)),
("abc\n", (3, 1.5)),
("Lorem ipsum \ndolor sit amet,", (15, 13.5)),
],
)
def test_line_statistics(self, per_extension_filter, content, expected):
line_statistics = per_extension_filter._line_statistics(content)
assert (
line_statistics == expected
), f"Expected {expected} but got {line_statistics}"
class FakeQualityFilter(DocumentFilter):
"""
Emulates FastTextQualityFilter without a model
"""
def __init__(self, alpha=3, seed=42):
super().__init__()
self._alpha = alpha
self._seed = np.random.seed(seed)
@batched
def score_document(self, df):
return pd.Series(np.arange(len(df)) / len(df))
@batched
def keep_document(self, df):
return np.random.pareto(self._alpha, size=len(df)) > 1 - df
class FakeLangId(DocumentFilter):
"""
Emulates FastTextLangId without a model
"""
def __init__(self, min_langid_score=0.3, convert_string=False):
super().__init__()
self._cutoff = min_langid_score
# Dask will automatically convert the list score type
# to a string without this option.
# See https://github.com/NVIDIA/NeMo-Curator/issues/33
dask.config.set({"dataframe.convert-string": convert_string})
@batched
def score_document(self, df):
scores = [[0.5, "EN"], [0.7, "HI"], [0.2, "PT"]]
scores = scores * len(df)
scores = scores[: len(df)]
return pd.Series(scores)
def keep_document(self, score):
return score[0] >= self._cutoff
class TestClassifierFilters:
def test_fake_quality_filter(self):
dataset = list_to_dataset(["a", "b", "c", "d"], npartitions=1)
filters = ScoreFilter(FakeQualityFilter())
filtered_data = filters(dataset)
expected_indices = [1, 2, 3]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])
assert all_equal(
expected_data, filtered_data
), f"Expected {expected_data} but got {filtered_data}"
def test_fake_langid_filter(self):
dataset = list_to_dataset(["a", "b", "c", "d"], npartitions=1)
filters = ScoreFilter(FakeLangId())
filtered_data = filters(dataset)
expected_indices = [0, 1, 3]
expected_data = DocumentDataset(dataset.df.loc[expected_indices])