-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtask27.java
53 lines (46 loc) · 1.81 KB
/
task27.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
/* MaxDoubleSliceSum
Find the maximal sum of any double slice.
Task Score 100%, Correctness 100%, Performance 100%
A non-empty array A consisting of N integers is given.
A triplet (X, Y, Z), such that 0 ≤ X < Y < Z < N, is called a double slice.
The sum of double slice (X, Y, Z) is the total of A[X + 1] + A[X + 2] + ... + A[Y − 1] + A[Y + 1] + A[Y + 2] + ... + A[Z − 1].
For example, array A such that:
A[0] = 3
A[1] = 2
A[2] = 6
A[3] = -1
A[4] = 4
A[5] = 5
A[6] = -1
A[7] = 2
contains the following example double slices:
double slice (0, 3, 6), sum is 2 + 6 + 4 + 5 = 17,
double slice (0, 3, 7), sum is 2 + 6 + 4 + 5 − 1 = 16,
double slice (3, 4, 5), sum is 0.
The goal is to find the maximal sum of any double slice.
Write a function:
class Solution { public int solution(int[] A); }
that, given a non-empty array A consisting of N integers, returns the maximal sum of any double slice.
Assume that:
N is an integer within the range [3..100,000];
each element of array A is an integer within the range [−10,000..10,000].
Complexity:
expected worst-case time complexity is O(N);
expected worst-case space complexity is O(N) (not counting the storage required for input arguments). */
class Solution {
/* We use Kadane's Algorithm in 2 directions:
forward and reverse */
public int solution(int[] A) {
int n = A.length;
int[] maxSumStart = new int[n];
int[] maxSumEnd = new int[n];
for (int i = 1, j = n-2; i < n-1; i++, j--) {
maxSumEnd[i] = Math.max(0, maxSumEnd[i-1] + A[i]);
maxSumStart[j] = Math.max(0, maxSumStart[j+1] + A[j]);
}
int maxSum = Integer.MIN_VALUE;
for (int i = 1; i < n-1; i++)
maxSum = Math.max(maxSum, maxSumEnd[i-1] + maxSumStart[i+1]);
return maxSum;
}
}