-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdrive_rnn.py
154 lines (135 loc) · 5.25 KB
/
drive_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import argparse
import base64
from datetime import datetime
import os
import shutil
import csv
import numpy as np
import socketio
import eventlet
import eventlet.wsgi
from PIL import Image
from flask import Flask
from io import BytesIO
import model as m
from tensorflow.keras.models import load_model
import tensorflow as tf
import utils
sio = socketio.Server()
app = Flask(__name__)
model = None
# prev_image_array = None # This was in the original code. Don't know what it does. Gonna use the variable for storing previous images when recurrent.
MAX_SPEED = 25
MIN_SPEED = 10
speed_limit = MAX_SPEED
@sio.on('telemetry')
def telemetry(sid, data):
if data:
# The current steering angle of the car
steering_angle = float(data["steering_angle"])
# The current throttle of the car
throttle = float(data["throttle"])
# The current speed of the car
speed = float(data["speed"])
# The current image from the center camera of the car
image = Image.open(BytesIO(base64.b64decode(data["image"])))
# print(args.im_list)
# save frame
if args.image_folder != '':
#timestamp = datetime.utcnow().strftime('%Y_%m_%d_%H_%M_%S_%f')[:-3]
#image_filename = os.path.join(args.image_folder, timestamp)
#image.save('{}.jpg'.format(image_filename))
pass
try:
image = np.asarray(image) # from PIL image to numpy array
image = utils.preprocess(image) # apply the preprocessing
image = np.array([image]) # the model expects 4D array
args.im_list.append(image)
if len(args.im_list) > utils.SEQUENCE_LEN:
args.im_list = args.im_list[-utils.SEQUENCE_LEN:]
# add image to buffer
# TO DO
steering_angle = 0
if len(args.im_list) == utils.SEQUENCE_LEN:
imgs = np.concatenate(args.im_list).reshape([1, 16, 160, 320, 3])
# print(imgs.shape)
steering_angle = model.predict(imgs, batch_size=1)[0,0,-1]
# print("HELLO", steering_angle)
# lower the throttle as the speed increases
# if the speed is above the current speed limit, we are on a downhill.
# make sure we slow down first and then go back to the original max speed.
global speed_limit
if speed > speed_limit:
speed_limit = MIN_SPEED # slow down
else:
speed_limit = MAX_SPEED
throttle = 1.0 - steering_angle**2 - (speed/speed_limit)**2
if len(args.im_list) < utils.SEQUENCE_LEN:
throttle = 0
print('{} {} {}'.format(steering_angle, throttle, speed))
send_control(steering_angle, throttle)
if args.image_folder != "":
csv_name = os.path.join(args.image_folder, args.model[:-3] + ".csv")
with open(csv_name, mode='a') as telemetry_csv:
timestamp = datetime.utcnow().strftime('%Y_%m_%d_%H_%M_%S_%f')[:-3]
telemetry_writer = csv.writer(telemetry_csv, delimiter = ',', quotechar = '"')
telemetry_writer.writerow([timestamp, steering_angle, throttle, speed])
except Exception as e:
print(e)
else:
# NOTE: DON'T EDIT THIS.
sio.emit('manual', data={}, skip_sid=True)
@sio.on('connect')
def connect(sid, environ):
print("connect ", sid)
send_control(0, 0)
def send_control(steering_angle, throttle):
sio.emit(
"steer",
data={
'steering_angle': steering_angle.__str__(),
'throttle': throttle.__str__()
},
skip_sid=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Remote Driving')
parser.add_argument(
'model',
type=str,
help='Path to model h5 file. Model should be on the same path.'
)
parser.add_argument(
'image_folder',
type=str,
nargs='?',
default='',
help='Path to image folder. This is where the images from the run will be saved.'
)
parser.add_argument('-k', help='drop out probability', dest='keep_prob', type=float, default=0.5)
parser.add_argument('-i', help='list of images fake arg', dest='im_list', type=list, default=[])
# parser.add_argument(
# 'is_rnn',
# type=bool,
# nargs='?',
# help='Whether or not the loaded model is an RNN'
# )
args = parser.parse_args()
model_builder = m.build_rnn
model = model_builder(args)
print(args.model)
model.load_weights(args.model)
model.summary()
if args.image_folder != '':
print("Creating image folder at {}".format(args.image_folder))
if not os.path.exists(args.image_folder):
os.makedirs(args.image_folder)
else:
shutil.rmtree(args.image_folder)
os.makedirs(args.image_folder)
print("RECORDING THIS RUN ...")
else:
print("NOT RECORDING THIS RUN ...")
# wrap Flask application with engineio's middleware
app = socketio.Middleware(sio, app)
# deploy as an eventlet WSGI server
eventlet.wsgi.server(eventlet.listen(('', 4567)), app)