forked from taherfattahi/dnn-distance-line-protection-zone
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistancelineprotectionzone_DNN.py
184 lines (150 loc) · 4.74 KB
/
distancelineprotectionzone_DNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# -*- coding: utf-8 -*-
"""DistanceLineProtectionZone-DeepNeuralNetwork.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1akwQJDo2d4iXak-gpp4v7qlcad9W5DbP
"""
!pip3 install ann_visualizer
!pip3 install keras-visualizer
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
import tensorflow as tf
from keras.regularizers import l2
from keras.models import Sequential
from keras.layers import Dense
from sklearn.metrics import accuracy_score
from ann_visualizer.visualize import ann_viz
from keras_visualizer import visualizer
from google.colab import files
uploaded = files.upload()
datasets = pd.read_csv('DistanceDataset.csv', sep=',')
X = datasets.iloc[:, [0,1]].values
Y = datasets.iloc[:, 2].values
datasets.head()
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_Train, X_Test, Y_Train, Y_Test = train_test_split(X, Y, test_size = 0.25, random_state = 0)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_Train)
X_train1 = scaler.transform(X_Train)
X_train1 = X_train1.astype(np.float32)
X_test1 = scaler.transform(X_Test)
X_test1 = X_test1.astype(np.float32)
n = 0
for item in Y_Train:
if item == 1.03:
Y_Train[n] = 1
elif item == 0:
Y_Train[n] = 0
elif item == 0.23:
Y_Train[n] = 2
elif item == 0.43:
Y_Train[n] = 3
else:
Y_Train[n] = 4
n += 1
Y_Train
n = 0
for item in Y_Test:
if item == 1.03:
Y_Test[n] = 1
elif item == 0:
Y_Test[n] = 0
elif item == 0.23:
Y_Test[n] = 2
elif item == 0.43:
Y_Test[n] = 3
else:
Y_Test[n] = 4
n += 1
Y_Test
model = Sequential()
model.add(Dense(10, input_dim=2, activation='relu', kernel_regularizer=l2(0.2)))
model.add(Dense(10, activation = 'relu'))
model.add(Dense(10, activation = 'relu'))
model.add(Dense(8, activation = 'relu'))
model.add(Dense(5, activation = 'softmax'))
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
history = model.fit(X_train1, Y_Train, validation_data = (X_test1, Y_Test), epochs=500, verbose=2)
ann_viz(model, title="Distance_Protection_Curve_DeepNeuralNetwork");
visual = visualizer(model, format='png', view=True)
def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return array[idx], idx
all_predict = model.predict(X_test1)
# print(all_predict)
all_pred_main = []
n = 0
for r in all_predict:
if find_nearest(all_predict[n], 1)[1] == 0:
all_pred_main.append(0)
elif find_nearest(all_predict[n], 1)[1] == 1:
all_pred_main.append(1)
elif find_nearest(all_predict[n], 1)[1] == 2:
all_pred_main.append(2)
elif find_nearest(all_predict[n], 1)[1] == 3:
all_pred_main.append(3)
elif find_nearest(all_predict[n], 1)[1] == 4:
all_pred_main.append(4)
n = n+1
print(Y_Test)
print(all_pred_main)
print("accuracy deep neural network: ", accuracy_score(Y_Test, all_pred_main))
# summarize history for accuracy
figure(figsize=(15, 10), dpi=80)
fig1 = plt.gcf()
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model Accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
fig1.savefig("model_accuracy.png", dpi=200)
files.download("model_accuracy.png")
figure(figsize=(15, 10), dpi=80)
fig1 = plt.gcf()
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()
plt.draw()
fig1.savefig("dnn_resolve_overfitting.png", dpi=200)
files.download("dnn_resolve_overfitting.png")
all_predict = model.predict(X_test1)
print(Y_Test)
all_predict
x_sample = scaler.transform([[-12, -1]])
x_sample = scaler.transform([[14, -1]])
x_sample = scaler.transform([[10, -5]])
x_sample = scaler.transform([[6, -2.5]])
x_sample = x_sample.astype(np.float32)
predict = model.predict(x_sample)
print(predict)
print()
print(find_nearest(predict[0], 1))
print()
if find_nearest(predict[0], 1)[1] == 0:
print("Result: " + str(0))
elif find_nearest(predict[0], 1)[1] == 1:
print("Result: " + str(1.03))
elif find_nearest(predict[0], 1)[1] == 2:
print("Result: " + str(0.23))
elif find_nearest(predict[0], 1)[1] == 3:
print("Result: " + str(0.43))
elif find_nearest(predict[0], 1)[1] == 4:
print("Result: " + str(0.03))
model.save( 'models/model.h5' )
tflite_model = tf.keras.models.load_model('models/model.h5')
converter = tf.lite.TFLiteConverter.from_keras_model(tflite_model)
tflite_save = converter.convert()
open("tfliteModel.tflite", "wb").write(tflite_save)